Controlling spin properties of molecules with quantum fields: ab-initio methodologies for spin polaritons
QED-Spin aims to develop novel techniques for manipulating molecular spin properties through quantum field interactions, advancing quantum computing, spectroscopy, and nuclear magnetic resonance.
Projectdetails
Introduction
The goal of QED-Spin is to build novel ab initio techniques to reveal effects induced by quantum fields on the spin properties of molecules. Quantum computing and spectroscopic techniques are just two of the main fields that stand to benefit significantly from advancements in spin engineering; a field that is currently at the science frontier both for experiments and quantum many-body theory.
Project Objectives
In this project, I will propose new strategies based on strong light-matter coupling to manipulate static and dynamical spin properties of molecules. The mission of QED-Spin is to explore, using advanced theoretical techniques, the phenomena that arise when quantum fields interact with the electronic and nuclear spins of molecular systems and their implications in:
- Chemistry
- Spectroscopy
- Spintronics
Expected Outcomes
In particular, the proposed techniques will represent a significant step forward toward a better manipulation of molecular spin qubits used in quantum information and energy and memory storage. They will also increase our current possibilities of control on the photochemistry of molecular systems.
Innovations in Techniques
The effects induced on the nuclear spins will lead to the formulation of a novel and more selective nuclear magnetic resonance technique. The developed theoretical and computational techniques will provide, differently from the previously applied model treatments, new tools to quantitatively simulate spin properties of molecules.
Methodological Framework
The combination of cavity quantum electrodynamics and accurate quantum chemistry methodologies will form the basis for the development of novel tools to interpret and design spin properties. The following approaches will be used:
- Coupled cluster theory
- Configuration interaction
- Density matrix renormalization group approaches
Conclusion
I believe that the results of QED-Spin will build the foundations for a new field of research -- cavity spintronics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.754 |
Totale projectbegroting | € 1.499.754 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 31-5-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITA DEGLI STUDI DI PERUGIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Chirality and spin selectivity in electron transfer processes: from quantum detection to quantum enabled technologiesThe CASTLE project aims to harness Chirality-Induced Spin Selectivity for quantum applications by studying electron transfer in chiral molecules to develop advanced molecular spin technologies. | ERC SyG | € 8.976.957 | 2023 | Details |
Coherent control of spin chains in graphene nanostructuresCONSPIRA aims to synthesize graphene architectures with interacting spin chains to control their quantum states for advancements in quantum computation and condensed matter physics. | ERC ADG | € 2.988.750 | 2024 | Details |
Chirality and spin selectivity in electron transfer processes: from quantum detection to quantum enabled technologies
The CASTLE project aims to harness Chirality-Induced Spin Selectivity for quantum applications by studying electron transfer in chiral molecules to develop advanced molecular spin technologies.
Coherent control of spin chains in graphene nanostructures
CONSPIRA aims to synthesize graphene architectures with interacting spin chains to control their quantum states for advancements in quantum computation and condensed matter physics.