Controlling Large Language Models
Develop a framework to understand and control large language models, addressing biases and flaws to ensure safe and responsible AI adoption.
Projectdetails
Introduction
Large language models (LMs) are quickly becoming the backbone of many artificial intelligence (AI) systems, achieving state-of-the-art results in many tasks and application domains. Despite the rapid progress in the field, AI systems suffer from multiple flaws inherited from the underlying LMs: biased behavior, out-of-date information, confabulations, flawed reasoning, and more.
Understanding and Controlling LMs
If we wish to control these systems, we must first understand how they work and develop mechanisms to intervene, update, and repair them. However, the black-box nature of LMs makes them largely inaccessible to such interventions. In this proposal, our overarching goal is to:
Develop a framework for elucidating the internal mechanisms in LMs and for controlling their behavior in an efficient, interpretable, and safe manner.
Objectives
To achieve this goal, we will work through four objectives:
-
Dissecting Internal Mechanisms
We will dissect the internal mechanisms of information storage and recall in LMs and develop ways to update and repair such information. -
Illuminating Higher-Level Capabilities
We will illuminate the mechanisms of higher-level capabilities of LMs to perform reasoning and simulations. We will also repair problems stemming from alignment steps. -
Investigating Training Processes
We will investigate how training processes of LMs affect their emergent mechanisms and develop methods for fine-grained control over the training process. -
Establishing a Benchmark
We will establish a standard benchmark for mechanistic interpretability of LMs to consolidate disparate efforts in the community.
Expected Outcomes
Taken as a whole, we expect the proposed research to empower different stakeholders and ensure a safe, beneficial, and responsible adoption of LMs in AI technologies by our society.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Reconciling Classical and Modern (Deep) Machine Learning for Real-World ApplicationsAPHELEIA aims to create robust, interpretable, and efficient machine learning models that require less data by integrating classical methods with modern deep learning, fostering interdisciplinary collaboration. | ERC COG | € 1.999.375 | 2023 | Details |
DEep COgnition Learning for LAnguage GEnerationThis project aims to enhance NLP models by integrating machine learning, cognitive science, and structured memory to improve out-of-domain generalization and contextual understanding in language generation tasks. | ERC COG | € 1.999.595 | 2023 | Details |
Control for Deep and Federated LearningCoDeFeL aims to enhance machine learning methods through control theory, developing efficient ResNet architectures and federated learning techniques for applications in digital medicine and recommendations. | ERC ADG | € 2.499.224 | 2024 | Details |
Reconciling Classical and Modern (Deep) Machine Learning for Real-World Applications
APHELEIA aims to create robust, interpretable, and efficient machine learning models that require less data by integrating classical methods with modern deep learning, fostering interdisciplinary collaboration.
DEep COgnition Learning for LAnguage GEneration
This project aims to enhance NLP models by integrating machine learning, cognitive science, and structured memory to improve out-of-domain generalization and contextual understanding in language generation tasks.
Control for Deep and Federated Learning
CoDeFeL aims to enhance machine learning methods through control theory, developing efficient ResNet architectures and federated learning techniques for applications in digital medicine and recommendations.