Controlling Gene Expression with Synthetic Cell-Penetrating Transcription Factors
SynTra aims to engineer synthetic transcription factors for precise gene regulation to address diseases like sickle cell and cancer by disrupting oncogenic transcriptional condensates.
Projectdetails
Introduction
The overarching goal of SynTra is the engineering of synthetic transcription factors (STFs) that can enter cells and activate or deactivate specific genes. Traditional drugs target only a small fraction of the human proteome, while compounds that can be programmed to target specific genes could address many relevant disease mechanisms, right at their basis.
Aim 1: Engineering STFs
In aim 1, I will engineer STFs that can:
- Bind to any given DNA base pair triplet
- Enter cells
To achieve these goals, I will develop design rules for preparing minimized α-helical scaffolds derived from zinc finger protein domains. Via peptide stapling, I will stabilize the structure of these STFs and boost their cell internalization. I will use a high throughput combinatorial screening methodology developed by me to optimize the STFs' properties.
Aim 2: Multimeric STFs
In aim 2, I will prepare multimeric STFs (consisting of multiple monomeric STFs from aim 1) that can target unique genes within the entire human genome with high specificity. I will obtain them with a combination of solid-phase and bioconjugation strategies.
With a hexameric STF (recognizing 18 DNA base pairs), I will target a specific gene promoter and trigger β-globin production as a promising strategy for sickle cell disease treatment.
Aim 3: Disrupting Transcriptional Condensates
In aim 3, I will use STFs to disrupt cancer-related liquid-liquid phase-separated transcriptional condensates. Transcriptional condensates rely on a network between transcription factors, DNA, and coactivators, and they play a crucial role in gene transcription.
With STFs, I will displace the oncogenic transcription factor MYC from its DNA binding site. I expect this interference to lead to a condensate disruption and to downregulation of oncogenic MYC-dependent transcription.
Conclusion
SynTra will deliver powerful and practical synthetic tools for studying and targeting disease mechanisms. Researchers at the interface of biology and chemistry will use the STFs developed in SynTra for basic research and drug development.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.851.328 |
Totale projectbegroting | € 1.851.328 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 31-5-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT LEIDENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Translational specialization of cellular identity in embryonic development and diseaseTRANSCEND aims to explore how translational specialization factors influence cell-fate decisions in embryogenesis, with a focus on cardiac identity and therapeutic restoration of cardiac function. | ERC COG | € 1.981.555 | 2023 | Details |
Harnessing the splicing code for targeted control of gene expressionThis project aims to elucidate the mechanisms of alternative splicing to enable precise modulation with small molecules, potentially transforming gene regulation and therapeutic development. | ERC SyG | € 5.000.764 | 2023 | Details |
Engineering synthetic mechanotransduction through nucleocytoplasmic transportThis project aims to engineer synthetic mechanotransduction in cells to control gene expression through mechanical signals, enhancing our understanding of cell behavior in response to tissue mechanics. | ERC ADG | € 2.499.875 | 2023 | Details |
Understanding mechanisms of Transcription Factor cooperativity across scalesTFCoop aims to uncover general principles of transcription factor cooperativity in gene regulation through extensive perturbation studies and advanced genomic techniques, enhancing understanding for regenerative medicine. | ERC COG | € 1.990.221 | 2024 | Details |
Translational specialization of cellular identity in embryonic development and disease
TRANSCEND aims to explore how translational specialization factors influence cell-fate decisions in embryogenesis, with a focus on cardiac identity and therapeutic restoration of cardiac function.
Harnessing the splicing code for targeted control of gene expression
This project aims to elucidate the mechanisms of alternative splicing to enable precise modulation with small molecules, potentially transforming gene regulation and therapeutic development.
Engineering synthetic mechanotransduction through nucleocytoplasmic transport
This project aims to engineer synthetic mechanotransduction in cells to control gene expression through mechanical signals, enhancing our understanding of cell behavior in response to tissue mechanics.
Understanding mechanisms of Transcription Factor cooperativity across scales
TFCoop aims to uncover general principles of transcription factor cooperativity in gene regulation through extensive perturbation studies and advanced genomic techniques, enhancing understanding for regenerative medicine.