Black Hole Horizons in Quantum Gravity

The project investigates black holes and the information paradox in quantum gravity using Jackiw-Teitelboim models to derive quantitative insights and explore universal techniques for understanding horizons.

Subsidie
€ 1.497.050
2022

Projectdetails

Introduction

The project "Black Hole Horizons in Quantum Gravity" aims for an in-depth investigation of black holes and the information paradox in the context of quantum gravity. Due to the recent breakthroughs in astronomy, these exotic objects have moved from the purely theoretical realm to being abundant in our physical universe.

Theoretical Understanding

Surprisingly, our theoretical understanding of them is insufficient to even in principle understand their horizons and what happens behind them. Our approach to tackle these questions is to combine a lower-dimensional approach with holography as a guide. Within this framework, substantial breakthroughs were made in the Sachdev-Ye-Kitaev models, and their low-energy gravitational description in terms of Jackiw-Teitelboim gravity. This model is exactly solvable to a large degree, and many important lessons on black hole physics and quantum gravity can be studied quantitatively and exactly.

Project Goals

Our goals within this project span across two lines:

  1. Addressing the Information Puzzle
    Firstly, we will apply quantum gravitational results on the Jackiw-Teitelboim gravity model to address aspects of the black hole information puzzle in a quantitative way and probe the deep questions on black hole horizons largely building on our detailed knowledge of this model. In particular, we will calculate correlation functions of local infalling bulk observables, and assess the effect of quantum gravitational corrections to evaporation.

  2. Investigating Universality
    Secondly, it is vital to investigate the universality of the set of techniques and methods we use in Jackiw-Teitelboim gravity. We will do this by pursuing several roads simultaneously:

    • Dilaton gravity models
    • 2D string theory
    • The original Sachdev-Ye-Kitaev model
    • Supersymmetric models
    • 3D pure gravity

Armed with these results, we will extrapolate to higher dimensions and in particular to our physical universe, making contact with the first objective.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.497.050
Totale projectbegroting€ 1.497.050

Tijdlijn

Startdatum1-9-2022
Einddatum31-8-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIVERSITEIT GENTpenvoerder

Land(en)

Belgium

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

Black holes: gravitational engines of discovery

The project aims to explore black holes and compact binaries through gravitational-wave and electromagnetic observations to advance understanding of strong gravity and fundamental physics.

€ 1.944.825
ERC ADG

High-Precision Gravitational Wave Physics from a Worldline Quantum Field Theory

This project aims to enhance the precision of gravitational wave predictions from black hole and neutron star mergers using a novel quantum formalism to test Einstein's gravity in extreme conditions.

€ 2.195.121
ERC COG

Quantum Complexity from Quantum Field Theories to Quantum Gravity.

This project aims to develop precise measures of quantum complexity in quantum field theories to enhance understanding of black holes and quantum systems through holographic methods.

€ 1.814.566
ERC ADG

Holography in the Gravitational Wave Era

This project aims to enhance understanding of quantum matter and gravity through holography, focusing on cosmological phase transitions, neutron star mergers, and spacetime singularities.

€ 2.499.451