Artificial Scientific Discovery of advanced Quantum Hardware with high-performance Simulators

ARTDISQ aims to leverage AI and high-performance simulators to automate the design of advanced quantum experiments, enhancing discoveries in gravitational wave detection and imaging systems.

Subsidie
€ 1.499.221
2025

Projectdetails

Introduction

The experimental capabilities to generate, control, and measure complex quantum systems have dramatically improved over the last few years. With ingenious proposals for practical applications, a powerful new paradigm of technology emerges that exploits quantum superposition and quantum entanglement.

As these systems get more advanced, designing new quantum experiments and hardware becomes ever more intricate for human scientists. To exploit the full potential of quantum physics, researchers have started to involve artificial intelligence in the automated design of quantum experiments. Unfortunately, even the currently most powerful methodologies have severe limitations and therefore cannot cope with the enormous potential that quantum mechanics promises us.

Project Proposal

For that reason, in ARTDISQ, I propose to build high-performance physical simulators which are at the heart of all AI-driven discovery and design efforts. The key idea is to use a framework originally developed for the efficient training and execution of large neural networks, called JAX.

JAX Framework

JAX is powerful enough to encode not only neural networks but a wide range of computer algorithms. It allows for modern high-performance computational techniques such as:

  • Just-in-time compilation
  • Auto-differentiation
  • Direct access to the GPU

In ARTDISQ, I will exploit this dramatic acceleration, which will open previously unchartered applications, including AI-driven:

  1. Design of highly sensitive and robust quantum-enhanced gravitational wave detectors
  2. Design of new quantum techniques for imaging systems, with a focus on optical telescopes
  3. Hardware-software co-design for quantum hardware with the potential of discovering highly unorthodox and exotic solutions with superior behavior.

Goals

As such, ARTDISQ aims to develop a revolutionary way to augment human researchers' ingenuity and creativity to accelerate scientific discoveries.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.499.221
Totale projectbegroting€ 1.499.221

Tijdlijn

Startdatum1-1-2025
Einddatum31-12-2029
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC ADG

New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise

ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.

€ 2.498.759
ERC COG

Verifiying Noisy Quantum Devices at Scale

This project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication.

€ 1.997.250
ERC ADG

Delineating the boundary between the computational power of quantum and classical devices

This project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning.

€ 1.807.721
EIC Pathfinder

Spatial Quantum Optical Annealer for Spin Hamiltonians

HEISINGBERG aims to enhance a spatial photonic spin simulator with squeezed light to achieve quantum advantage, enabling efficient solutions for NP-hard problems via advanced algorithms.

€ 3.260.250