Algorithms, Security and Complexity for Quantum Computers
This project aims to develop general techniques for designing quantum algorithms that accommodate early quantum computers' limitations and security needs, enhancing practical applications across various fields.
Projectdetails
Introduction
As progress is made in implementing quantum computers, the question is looming: What will we do with them? This proposal is concerned with the theoretical computer science aspects of this question.
Quantum Algorithms
Part of this question is concerned with quantum algorithms (WP1). We know of several examples of quantum algorithms with large speedups over the best-known classical algorithms, such as Shor's poly-time integer factorization algorithm. While this is evidence that quantum computers will be useful once built, it does not tell us what quantum computers will be used for in practice (probably not much factoring).
To ensure that quantum computer users are best able to make use of them, we will focus on developing general techniques for the design of quantum algorithms that can be easily applied by subject-matter experts in different fields to the problems that interest them.
Constraints of Early Quantum Computers
We will also consider the constraints of early quantum computers in our algorithm design.
Memory Limitations
First, we would like to understand how the limited memory of early quantum computers will impact what they can do. Some of the most important techniques for designing quantum algorithms are already well-suited to the study of space-bounded computation, and we will generalize and improve these in WP1.
Lower Bounds and Complexity
To complement this, we will study lower bounds and complexity (WP2), focusing on space-bounded complexity classes, which have many relationships with other complexity classes.
Delegated Quantum Computations
Second, since most early users will have to delegate their quantum computations, we would like to understand which quantum algorithms can still be used in various delegated or multiparty settings where some type of security is a consideration.
Secure Quantum Computing Protocols
We take the novel approach of using a quantum algorithmic model called span programs to design secure quantum computing protocols (WP3). It turns out that space-bounded models and secure quantum computation are very much related, and understanding this relationship is what ties this proposal together.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.798 |
Totale projectbegroting | € 1.499.798 |
Tijdlijn
Startdatum | 1-7-2022 |
Einddatum | 30-6-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Verifiying Noisy Quantum Devices at ScaleThis project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication. | ERC COG | € 1.997.250 | 2023 | Details |
Delineating the boundary between the computational power of quantum and classical devicesThis project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning. | ERC ADG | € 1.807.721 | 2024 | Details |
Beyond-classical Machine learning and AI for Quantum PhysicsThis project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively. | ERC COG | € 1.995.289 | 2024 | Details |
Enabling efficient computation on fault tolerant quantum computersDevelop a suite of hardware-agnostic quantum algorithms to optimize quantum circuits, enabling faster solutions to complex business problems beyond classical computing capabilities. | EIC Accelerator | € 2.499.999 | 2023 | Details |
Verifiying Noisy Quantum Devices at Scale
This project aims to develop scalable, secure methods for characterizing and certifying quantum devices using interactive proofs, facilitating reliable quantum computation and communication.
Delineating the boundary between the computational power of quantum and classical devices
This project aims to assess and leverage the computational power of quantum devices, identifying their advantages over classical supercomputers through interdisciplinary methods in quantum information and machine learning.
Beyond-classical Machine learning and AI for Quantum Physics
This project aims to identify quantum many-body problems with significant advantages over classical methods and develop new quantum machine learning techniques to solve them effectively.
Enabling efficient computation on fault tolerant quantum computers
Develop a suite of hardware-agnostic quantum algorithms to optimize quantum circuits, enabling faster solutions to complex business problems beyond classical computing capabilities.