A two-photon compound fiberscope to study the brain at all spatial and temporal scales.
Developing a novel 2P compound fiberscope to enable imaging and manipulation of neuronal circuits in freely moving animals, enhancing our understanding of brain function and behavior.
Projectdetails
Introduction
Understanding how neuronal circuits process information is a major scientific challenge, which demands new tools to address the complexity of the brain in animals during natural functioning. Two-photon (2P) microscopy, combined with optogenetics, has revolutionized neuroscience thanks to the possibility to image and photostimulate neuronal activity with light, but suffers from important limitations.
Limitations of Current Techniques
To determine how perception and behaviour arise, we need to record and manipulate at will the activity of every neuron in a circuit in freely behaving animals. 2P microscopy is, on the contrary, mainly performed in head-fixed animals, which poses a clear limitation to the study of natural behaviour.
At the same time, understanding how different brain areas exchange information requires:
- Maintaining single cell spatial resolution (~ 15 μm)
- Achieving temporal resolutions compatible with the propagation of neuronal signals (~ 1 ms)
- Covering ultra large spatial scales (5 mm)
These requirements are today completely out of reach for 2P microscopy.
Project Goals
In this project, I will overcome these limitations and develop the 2P compound fiberscope, a new optical technique based on the unique combination of multiple optical fibers and optimal spatial and temporal beam shaping approaches. This will completely change the way we study neuronal circuits thanks to two main technologies:
- A flexible 2P micro-endoscope to image and photostimulate neurons in freely moving animals, which will give access to entire brain regions with the highest imaging and manipulation efficiency and the fastest acquisition speed.
- The first 2P mesoscope specifically conceived to image and manipulate neuronal activity with single cell resolution across the majority of the mouse cortex on temporal scales compatible with the propagation of neuronal signals.
Conclusion
These technologies will pave the way for a real understanding of how neuronal circuits drive behaviour and how different brain regions communicate to process neuronal information.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.708.614 |
Totale projectbegroting | € 1.708.614 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYApenvoerder
- INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Minimally invasive endoscopes for neuronal activity monImaging-assisted single-cell specific activity monitoring and optogenetic stimulation of deep brain structures in motile and awaken animal modelsWOKEGATE aims to enhance minimally invasive endoscopes for real-time monitoring of neuronal activity in awake animals, facilitating advanced neuroscience research and commercial applications. | ERC POC | € 150.000 | 2022 | Details |
Time-based single molecule nanolocalization for live cell imagingThe project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume. | ERC ADG | € 2.498.196 | 2023 | Details |
Breaking the Resolution Limit in Two-Photon Microscopy Using Negative PhotochromismThis project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities. | EIC Pathfinder | € 2.266.125 | 2023 | Details |
A sonogenetic brain-machine interface for neurosciences and visual restorationDeveloping a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders. | ERC SyG | € 7.817.939 | 2024 | Details |
Minimally invasive endoscopes for neuronal activity monImaging-assisted single-cell specific activity monitoring and optogenetic stimulation of deep brain structures in motile and awaken animal models
WOKEGATE aims to enhance minimally invasive endoscopes for real-time monitoring of neuronal activity in awake animals, facilitating advanced neuroscience research and commercial applications.
Time-based single molecule nanolocalization for live cell imaging
The project aims to develop a novel live-cell nanoscopy technique that enables high-speed, high-resolution imaging of biological processes at the nanoscale without compromising depth or volume.
Breaking the Resolution Limit in Two-Photon Microscopy Using Negative Photochromism
This project aims to develop a novel multiphoton microscopy technique that achieves four-photon-like spatial resolution using two-photon absorption, enhancing biomedical imaging capabilities.
A sonogenetic brain-machine interface for neurosciences and visual restoration
Developing a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders.