Wearable Integrated Soft Haptic Display for Prosthetics

Develop a wearable fluidic force feedback device for prostheses to enhance tactile sensation and usability, aiming for broad application and increased technology readiness for market integration.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

In this ERC Proof of Concept, we want to develop a wearable fluidic force feedback device for upper and lower limb prostheses, composed of soft silicone chambers along with their actuation and control units, to exert pressures in multiple specific stump sites.

Project Overview

This solution, named Wearable Integrated Soft Haptic device (WISH), strives to achieve both good modality matching (MM) and somatotopic matching (SM), while keeping non-invasive and practicable. The principle, preliminarily demonstrated on a single subject and one prosthesis type to display one type of force/tactile information, has the potential to generalize in several directions.

Goals

Our goal is to transform WISH into a technology platform supporting different devices for different types of prostheses available in the market, for both upper and lower limbs.

Collaboration and User Involvement

We will depend on user involvement, team with hospitals and rehabilitation units, and work with companies producing prostheses (see endorsement letters) to acquire domain-specific knowledge and to test our devices in real use cases.

Technology Readiness Level

Through this project, our Technology Readiness Level will increase from 3 to 4/5 and enable us to apply for an EIC Transition for subsequent development and validation in a larger cohort.

Unique Opportunity

To the best of our knowledge, no other haptic display technology for prosthesis users has ever reached such maturity and readiness level, which makes this opportunity unique.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-7-2022
Einddatum31-12-2023
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIApenvoerder

Land(en)

Geen landeninformatie beschikbaar

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Computational Design of Multimodal Tactile Feedback within Immersive Environments

ADVHANDTURE aims to enhance virtual reality by developing innovative computational models for realistic multimodal tactile feedback, improving 3D interaction and user immersion.

€ 1.999.750
ERC ADG

Soft-exoskeleton suit To Restore Autonomous Locomotion

STROLL aims to develop a lightweight, soft robotic exoskeleton to autonomously restore walking ability in lower-limb paralyzed patients, enhancing their quality of life.

€ 2.449.676
EIC Pathfinder

Advanced Intelligent stimulation device: HAND movement restoration

The AI-HAND project aims to develop an advanced ASIC-based implanted device with self-adapting electrodes to restore hand movements in quadriplegic patients through innovative nerve stimulation techniques.

€ 2.999.834
MIT Haalbaarheid

Mid-air Electromagnetic-based Haptic Device (MEHD)

HapMag ontwikkelt een contactloze haptische technologie met elektromagnetische feedback voor medische training, gericht op het verbeteren van vaardigheden en vroegtijdige kankerdetectie.

€ 20.000