Versatile Polypeptide-based Intranasal Drug Delivery Platform(s) to Tackle CNS Disorders.
POLYBRAINT aims to develop an innovative intranasal drug delivery platform to effectively transport biological agents across the blood-brain barrier for treating CNS disorders.
Projectdetails
Introduction
Nearly one in six of the world's population suffers from neurological disorders, and this number is expected to keep growing. Many of those central nervous system (CNS) disorders still do not have an approved therapy, mainly due to one of the most challenging barriers, the blood-brain barrier (BBB).
Challenges in Drug Delivery
Only 2% of small-molecule drugs and ~0% of biologic drugs can reach the brain, thus stunting the development of treatment options.
Project Overview
In POLYBRAINT, we will explore the technical and commercial feasibility of an intranasal drug delivery platform (derived from ERC consolidator MyNano) to deliver biological agents to the brain for the treatment of CNS pathologies.
Functionalization and Delivery
After adequate functionalization, our intranasally (i.n.) administered nanocarrier can reach the brain and diffuse through to specific areas of interest (i.e., hippocampus, olfactory bulb...).
Objectives
POLYBRAINT aims to:
- Confirm the transport, delivery, and controlled release of a functional biological agent.
- Establish an intellectual property strategy.
- Assess the future commercialization feasibility of our innovative platform.
Unique Properties of the Platform
Our i.n. platform has unique properties capable of overcoming the main limitations of existing approaches. It can revolutionize what has been achieved so far in the field, including:
- Greater versatility
- Higher loading capacity
- Controlled-sustained drug release after rationally designed bioresponsive conjugation strategies
Scalability and Business Case
Additionally, our nanocarrier can be scaled at the industrial level, thus overcoming a significant bottleneck of current nanocarrier-based therapeutics.
Our platform offers a highly attractive business case, as biotechnology and pharmaceutical companies heavily invest in nanomedicine due to the need for novel drug delivery strategies that can cross challenging biological barriers such as the blood-brain barrier.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2022 |
Einddatum | 30-11-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- FUNDACION DE LA COMUNIDAD VALENCIANA CENTRO DE INVESTIGACION PRINCIPEFELIPEpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
In Vivo CRISPR-Based Nanoplatform for Gene Editing: A New Disruptive Avenue for Non-Invasive Treatment of Genetic Brain DiseasesThis project aims to develop a novel nanoplatform for the safe and efficient delivery of CRISPR gene editing technology to treat genetic brain diseases non-invasively. | ERC COG | € 2.249.895 | 2022 | Details |
Creating an orthogonal gate to the brainThis project aims to revolutionize brain drug delivery by creating a novel orthogonal receptor for efficient transport across the blood-brain barrier, targeting treatments for brain metastatic breast cancer. | ERC STG | € 1.499.136 | 2023 | Details |
4D Brain-Targeting Nanomedicines for Treating NeurodegenerationThis project aims to develop advanced 4D-brain-targeting nanoparticles using nanotechnology to effectively deliver treatments for neurodegenerative diseases across the blood-brain barrier. | ERC COG | € 2.000.000 | 2023 | Details |
Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterialsBRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome. | EIC Pathfinder | € 3.083.850 | 2023 | Details |
In Vivo CRISPR-Based Nanoplatform for Gene Editing: A New Disruptive Avenue for Non-Invasive Treatment of Genetic Brain Diseases
This project aims to develop a novel nanoplatform for the safe and efficient delivery of CRISPR gene editing technology to treat genetic brain diseases non-invasively.
Creating an orthogonal gate to the brain
This project aims to revolutionize brain drug delivery by creating a novel orthogonal receptor for efficient transport across the blood-brain barrier, targeting treatments for brain metastatic breast cancer.
4D Brain-Targeting Nanomedicines for Treating Neurodegeneration
This project aims to develop advanced 4D-brain-targeting nanoparticles using nanotechnology to effectively deliver treatments for neurodegenerative diseases across the blood-brain barrier.
Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterials
BRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome.