Scalable method for production of fatty commodity e-chemicals from recycled CO2
CO2Chains aims to sustainably synthesize aliphatic organic compounds from renewable C1 carbon sources, reducing costs and emissions while complying with EU regulations for a circular economy.
Projectdetails
Introduction
Aliphatic organic compounds are an essential class of platform chemicals in a wide range of industries. They account for a global market volume exceeding 20 EUR billion per year. However, their production currently relies on fossil-based petrochemicals and deforestation-linked natural oils, contributing significant net greenhouse gas emissions and facing strict EU regulations aimed at phasing out unsustainable production practices.
Project Overview
The CO2Chains project proposes a groundbreaking solution by synthesizing a wide variety of industrially relevant chemicals directly from sustainable and lower-cost C1 carbon sources. Unlike conventional multistep processes, this method catalytically converts renewable C1 raw materials into aliphatic organic compounds with high chemo- and regio-selectivity under mild conditions.
Benefits of the CO2Chains Method
This innovation eliminates the need to feed costly, preformed precursor compounds, drastically reducing feedstock costs, and aligning with current and upcoming EU directives on the environmental impact of chemical production.
Project Goals
The project aims to demonstrate the economic feasibility of CO2Chains. It focuses on upscaling the new manufacturing concept, with a strong emphasis on product benchmarking, which is a critical factor for customer acceptance and regulatory compliance.
Analysis and Business Case
Techno-economic and market analyses will culminate in a robust business case for this technology, which transforms waste CO2 into high added-value and global-demand chemical products. This advancement represents a significant step forward in sustainable manufacturing and supports the principles of a circular economy.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 30-9-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light OlefinsECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy. | EIC Pathfinder | € 2.519.031 | 2023 | Details |
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomersECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks. | EIC Pathfinder | € 3.776.701 | 2023 | Details |
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and ChemicalsThe project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration. | EIC Pathfinder | € 2.250.500 | 2023 | Details |
The development of a full scale plant for the production of sustainable medium chain fatty acidsChainCraft aims to establish a circular economy by converting organic waste into valuable medium chain fatty acids for various industries, with plans for a full-scale sustainable production plant. | EIC Accelerator | € 2.499.999 | 2023 | Details |
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light Olefins
ECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy.
Electrobiocatalytic cascade for bulk reduction of CO2 to CO coupled to fermentative production of high value diamine monomers
ECOMO aims to innovate sustainable production of high-value diamines from CO2 and nitrogen using bioelectrocatalysis and engineered microbes, enhancing chemical industry building blocks.
Highly Efficient Reactor for Conversion of CO2 and H2O to Carbon Neutral Fuels and Chemicals
The project aims to develop a modular reactor technology for synthesizing carbon-neutral fuels and chemicals from CO2 and H2O using renewable energy, promoting sustainability and industrial integration.
The development of a full scale plant for the production of sustainable medium chain fatty acids
ChainCraft aims to establish a circular economy by converting organic waste into valuable medium chain fatty acids for various industries, with plans for a full-scale sustainable production plant.