Scalable Graphene-enabled ElectroChemical Treatment for Complete Destruction of “Forever Chemicals” in Contaminated Water
This project aims to upscale a graphene sponge-based electrochemical treatment for effectively degrading PFAS in wastewater, promoting sustainable technology adoption and contributing to a toxic-free environment.
Projectdetails
Introduction
Poly- and perfluoroalkyl substances (PFAS) have been used since the 1940s and are known as “forever chemicals” due to their extreme persistency to advanced (waste)water treatment strategies. Due to the strength of the C-F bond, each released molecule of PFAS remains in the environment.
PFAS Characteristics
Today there are more than 9,000 known PFAS, the majority of them being extremely resistant to any kind of degradation, and with high bioaccumulation potentials and toxicities.
Electrochemical Processes
Electrochemical processes can address the challenge of PFAS presence in water, provided that the anode material is low cost and can break the C-F bond without forming toxic byproducts.
Graphene Sponge Anode
The graphene sponge anode developed by our team is the first material to fulfill both requirements. In this project, we will aim at upscaling the electrochemical treatment based on graphene sponge electrodes and testing its long-term performance in degrading PFAS from complex residual streams.
Key Scientific and Technical Questions
This will enable us to answer key scientific and technical questions required for further technology adoption by the water industry, many of them related to:
- The fundamental mechanisms of electrochemical C-F bond breakage
- Features of anodically polarized graphene
Technology Potential
Based on the results achieved to date at lab-scale, GRAPHEC technology has a strong potential to evolve into a sustainable, chemical-free destruction technology for PFAS-laden wastewaters. It aims to achieve their complete destruction at ambient temperature and pressure, in modular units, with low capital and operational cost.
Intellectual Property and Network Engagement
Finally, this project also aims at keeping the existing intellectual property and engaging early technology adopters in Europe and beyond to form a mature network of future clients and reach a technology readiness level (TRL) 6 at the end of the project.
Conclusion
The project will deliver a new platform technology for the removal of toxic and persistent chemicals from water and is likely to play a key role in the EU’s Green Deal Agenda for securing a toxic-free environment.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 30-11-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT CATALA DE RECERCA DE L'AIGUApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Per and PolyFluorinated Alkyl Substances in grOUNdwaTer: water treatment for industrial use in the surfAce fInishing iNdustryThe LIFE FOUNTAIN project aims to reduce PFAS pollution in groundwater using functionalized magnetic nanoparticles, enabling treated water reuse in the surface finishing industry and enhancing environmental sustainability. | LIFE SAP | € 1.303.581 | 2022 | Details |
Combining novel Analytical protocols for PFAS contamination with Technologies for sustainable RemediationLIFE CAPTURE aims to create sustainable management methods for PFAS contamination in soil and groundwater through robust analysis protocols, innovative remediation technologies, and pragmatic risk assessments. | LIFE SAP | € 2.950.433 | 2022 | Details |
PFAS systemic regional approach to Assess Spatial distribution, Transfer, Exposure and Remediation of widespread pollution in Willebroek, FlandersLIFE PFASTER aims to enhance soil and water quality in Willebroek by developing innovative, replicable remediation methods for PFAS pollution, benefiting biodiversity and human health. | LIFE SAP | € 2.632.558 | 2024 | Details |
Development and manufacturing of forest-based membranes for electrochemical energy devicesCellfion aims to revolutionize renewable energy technologies by introducing a cost-effective, bio-based ion-selective membrane from natural cellulose, replacing toxic PFSA membranes. | EIC Accelerator | € 2.435.182 | 2024 | Details |
Per and PolyFluorinated Alkyl Substances in grOUNdwaTer: water treatment for industrial use in the surfAce fInishing iNdustry
The LIFE FOUNTAIN project aims to reduce PFAS pollution in groundwater using functionalized magnetic nanoparticles, enabling treated water reuse in the surface finishing industry and enhancing environmental sustainability.
Combining novel Analytical protocols for PFAS contamination with Technologies for sustainable Remediation
LIFE CAPTURE aims to create sustainable management methods for PFAS contamination in soil and groundwater through robust analysis protocols, innovative remediation technologies, and pragmatic risk assessments.
PFAS systemic regional approach to Assess Spatial distribution, Transfer, Exposure and Remediation of widespread pollution in Willebroek, Flanders
LIFE PFASTER aims to enhance soil and water quality in Willebroek by developing innovative, replicable remediation methods for PFAS pollution, benefiting biodiversity and human health.
Development and manufacturing of forest-based membranes for electrochemical energy devices
Cellfion aims to revolutionize renewable energy technologies by introducing a cost-effective, bio-based ion-selective membrane from natural cellulose, replacing toxic PFSA membranes.