Robotic and Electrical Stimulation Platform for Integral Neuromuscular Enhancement
RE-SPINE creates a neuro-robotic platform combining a robotic ankle exoskeleton and spinal stimulation to enhance lower limb rehabilitation and promote motor recovery after neuromuscular injuries.
Projectdetails
Introduction
RE-SPINE develops a real-time neuro-robotic platform for lower limb rehabilitation. Motor recovery following neuromuscular injuries is often sub-optimal. A key barrier hampering progress is that current neurorehabilitation robots interact with the human with limited knowledge of their effect on critical neuromuscular targets.
Proposed Solution
RE-SPINE addresses this challenge by proposing a platform that integrates a stationary robotic ankle exoskeleton with a non-invasive spinal cord electrical stimulation system. This platform generates electrical and mechanical stimuli non-invasively, which are directed to spinal motor neurons and innervated muscle fibers, with precision not considered before.
Technology Integration
RE-SPINE combines non-invasive biosignal recording and numerical modeling to decode the cellular activity of spinal motor neurons, with the resulting mechanical forces generated by innervated muscle fibers.
- Residual spinal motor neuron activity is translated into biomechanical force.
- This force is subsequently used to enable volitional and continuous control of a stationary robotic ankle exoskeleton across a wide range of joint rotations, which could not be otherwise achieved without neuro-robotic support.
Spinal Cord Stimulation
Concurrently, decoded spinal motor neuron activity is used to command spinal cord electrical stimulation patterns that:
- Modulate spinal excitability
- Enhance neuronal synchronization
- Ultimately improve volitional control of the own leg
Long-term Benefits
Over time, the integrated effects of neuro-controlled electrical and mechanical stimulation promote positive neuroplastic changes, which are required for gaining integral motor recovery after injury. This approach has the potential to disrupt current robotic systems for rehabilitation.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-7-2025 |
Einddatum | 31-12-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT TWENTEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Induction of NEuromuscular Plasticity for natural motor rehabilitaTIONINcEPTION aims to enhance neurorehabilitation by optimizing stimulation protocols through real-time estimation of neural connectivity from EMG signals, promoting recovery in stroke and cancer survivors. | ERC COG | € 1.999.533 | 2022 | Details |
BRAIN-SPINE INTERFACES TO REVERSE UPPER- AND LOWER-LIMB PARALYSISDeveloping fully-implantable brain-spine interfaces to restore movement in individuals with chronic paralysis through advanced neurosensors and neurostimulation systems. | EIC Transition | € 2.490.802 | 2022 | Details |
A Direct Sensorimotor Connection with the Spared Neural Code of Movement to Regain Motor FunctionThis project aims to develop a bidirectional neural interface that enhances motor function in paralyzed individuals by precisely mapping and engaging spinal motor neurons through advanced sensing and feedback methods. | ERC STG | € 1.495.271 | 2024 | Details |
Robotic bioreactors for the longitudinal control of restorative remodelling in the human skeletal muscleROBOREACTOR aims to develop robots that deliver electro-mechanical stimuli to enhance muscle remodeling and control inflammation over time, improving rehabilitation for neuromuscular disorders. | ERC COG | € 2.000.000 | 2024 | Details |
Induction of NEuromuscular Plasticity for natural motor rehabilitaTION
INcEPTION aims to enhance neurorehabilitation by optimizing stimulation protocols through real-time estimation of neural connectivity from EMG signals, promoting recovery in stroke and cancer survivors.
BRAIN-SPINE INTERFACES TO REVERSE UPPER- AND LOWER-LIMB PARALYSIS
Developing fully-implantable brain-spine interfaces to restore movement in individuals with chronic paralysis through advanced neurosensors and neurostimulation systems.
A Direct Sensorimotor Connection with the Spared Neural Code of Movement to Regain Motor Function
This project aims to develop a bidirectional neural interface that enhances motor function in paralyzed individuals by precisely mapping and engaging spinal motor neurons through advanced sensing and feedback methods.
Robotic bioreactors for the longitudinal control of restorative remodelling in the human skeletal muscle
ROBOREACTOR aims to develop robots that deliver electro-mechanical stimuli to enhance muscle remodeling and control inflammation over time, improving rehabilitation for neuromuscular disorders.