Proof of Concept Prototype for Matching Applications on BELFORT Hardware
The project aims to enhance the efficiency of fully homomorphic encryption (FHE) for real-time operations on encrypted data in cloud settings, enabling seamless privacy-preserving queries.
Projectdetails
Introduction
The world has become one global village, strongly connected by the internet. Users, applications, and companies produce huge amounts of data. This data is mostly very private (health, financial, commercial data, etc.), requiring organizations to encrypt the data when storing or transmitting it. In Europe, fortunately, our GDPR regulations are very strict about this.
Conflicting Requirements
On the other hand, many legitimate applications want to inspect or match the data with some database. Examples include:
- Matching encrypted names with a red list
- Providing privacy in financial transactions
- Matching encrypted DNA snippets in a database
Solution Overview
A solution to these conflicting requirements is offered by a new field in cryptography: computing on encrypted data (COED), and more specifically, fully homomorphic encryption (FHE). With FHE, data sits encrypted in the cloud. The data holder, i.e., the remote server, has no knowledge and is unable to decrypt the data.
Advantages of FHE
The magic of FHE is that operations can still be performed on the data, even though it remains encrypted. Unfortunately, it is currently too slow and too cumbersome to be used in practice.
Project Focus
Within our ERC grant BELFORT, which focuses on "Hardware Acceleration for Computing on Encrypted Data," a novel hardware processor demonstrates orders of magnitude speed-up for essential operations in FHE.
Objectives
This POC aims to move from our academic proof of concept into a full-stack project integrated into open-source and commercial FHE libraries. We then plan to run a demo on an application of database look-up operations (‘keyword matching’), as they appear in many FHE applications.
Ultimate Goal
The ultimate goal of this project is to make operations on encrypted data efficient enough to perform them on the fly in a cloud setting. When a user formulates privacy-preserving encrypted queries to a server, it should be imperceptible that the operations are occurring in the encrypted domain.
Being able to answer a query on the fly without delay will make this goal happen.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 31-8-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KATHOLIEKE UNIVERSITEIT LEUVENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Overcoming Barriers and Efficiency Limitations in Secure ComputationThe OBELiSC project aims to enhance secure computation methods to protect sensitive data in large-scale networks while addressing current protocol limitations. | ERC Starting... | € 1.500.000 | 2024 | Details |
Enabling Homomorphic Encryption of Deep Neural Network Models and Datasets in Production EnvironmentsHomE aims to revolutionize encrypted deep learning by leveraging persistent memory technology to enhance performance and enable large model execution beyond current DRAM limitations. | ERC Consolid... | € 2.680.195 | 2022 | Details |
Reinventing Symmetric Cryptography for Arithmetization over Large fiEldsThis project aims to develop efficient symmetric cryptographic algorithms in GF(q) to enhance security in complex computing environments while minimizing performance overhead. | ERC Starting... | € 1.488.988 | 2022 | Details |
Custom Cryptographic Solutions with Formal Security GuaranteesCryspen aims to transition ERC Circus's verified cryptographic research into a production-ready software stack, enhancing security for enterprises through formal verification and custom solutions. | ERC Proof of... | € 150.000 | 2022 | Details |
Future-Proof Data Systems in the Post-Moore EraFDS aims to revolutionize software infrastructure for data-intensive jobs by creating efficient system abstractions and cost models to optimize performance on modern specialized hardware. | ERC Starting... | € 1.496.305 | 2025 | Details |
Overcoming Barriers and Efficiency Limitations in Secure Computation
The OBELiSC project aims to enhance secure computation methods to protect sensitive data in large-scale networks while addressing current protocol limitations.
Enabling Homomorphic Encryption of Deep Neural Network Models and Datasets in Production Environments
HomE aims to revolutionize encrypted deep learning by leveraging persistent memory technology to enhance performance and enable large model execution beyond current DRAM limitations.
Reinventing Symmetric Cryptography for Arithmetization over Large fiElds
This project aims to develop efficient symmetric cryptographic algorithms in GF(q) to enhance security in complex computing environments while minimizing performance overhead.
Custom Cryptographic Solutions with Formal Security Guarantees
Cryspen aims to transition ERC Circus's verified cryptographic research into a production-ready software stack, enhancing security for enterprises through formal verification and custom solutions.
Future-Proof Data Systems in the Post-Moore Era
FDS aims to revolutionize software infrastructure for data-intensive jobs by creating efficient system abstractions and cost models to optimize performance on modern specialized hardware.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
PRESERVING USERS DATA PRIVACY AND SECURITY IN A FACIAL RECOGNITION SYSTEMDit project onderzoekt de toepassing van homomorfe encryptie voor veilige verwerking en opslag van gezichtsherkenningsdata, om privacyproblemen te verhelpen. | Mkb-innovati... | € 19.922 | 2020 | Details |
Equity PlazaEquity Plaza ontwikkelt een gedecentraliseerd platform voor efficiënte en transparante digitale assettransacties via blockchain. | Mkb-innovati... | € 20.000 | 2020 | Details |
Onhackbare hardwarematige VPN (OHV)OptiLogix B.V. onderzoekt de haalbaarheid van een veilige, onhackbare hardwarematige VPN-oplossing voor betaalbare en risicoloze remote toegang voor zowel bedrijven als particulieren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Project MITH2020 JP van HelvoortHet project ontwikkelt een proxyservice voor de gezondheidszorg die toegang tot gevoelige data beheert en logt, om privacy te waarborgen en te voldoen aan wetgeving. | Mkb-innovati... | € 20.000 | 2020 | Details |
Onderzoek haalbaarheid L-DNA artikelen converterHet project richt zich op het ontwikkelen van een nieuwe cryptografische standaard en het verkennen van alternatieve oplossingen om de latency van een prototype voor letteridentificatie met metadata te verminderen. | Mkb-innovati... | € 20.000 | 2022 | Details |
PRESERVING USERS DATA PRIVACY AND SECURITY IN A FACIAL RECOGNITION SYSTEM
Dit project onderzoekt de toepassing van homomorfe encryptie voor veilige verwerking en opslag van gezichtsherkenningsdata, om privacyproblemen te verhelpen.
Equity Plaza
Equity Plaza ontwikkelt een gedecentraliseerd platform voor efficiënte en transparante digitale assettransacties via blockchain.
Onhackbare hardwarematige VPN (OHV)
OptiLogix B.V. onderzoekt de haalbaarheid van een veilige, onhackbare hardwarematige VPN-oplossing voor betaalbare en risicoloze remote toegang voor zowel bedrijven als particulieren.
Project MITH2020 JP van Helvoort
Het project ontwikkelt een proxyservice voor de gezondheidszorg die toegang tot gevoelige data beheert en logt, om privacy te waarborgen en te voldoen aan wetgeving.
Onderzoek haalbaarheid L-DNA artikelen converter
Het project richt zich op het ontwikkelen van een nieuwe cryptografische standaard en het verkennen van alternatieve oplossingen om de latency van een prototype voor letteridentificatie met metadata te verminderen.