Pharmacoepigenetics for precision medicine in type 2 diabetes
PROCEED aims to develop and commercialize blood-based epigenetic markers to predict metformin response in Type 2 diabetes patients, enhancing personalized therapy and clinical decision-making.
Projectdetails
Introduction
The prevalence of diabetes will rise to ~592 million in 2035. Type 2 diabetes (T2D) is a leading cause of death through its vascular complications. High glucose increases the risk for complications, and thereby suffering for patients and costs for society.
Importance of Optimal Therapy
It is important that patients with T2D receive an optimal therapy that lowers blood glucose. Metformin is the first-line T2D therapy. However, ~30% of patients do not respond to metformin. Currently, there are no biomarkers that predict the response to metformin.
Discovery of Epigenetic Markers
We discovered blood-based epigenetic markers that could discriminate between responders and non-responders to metformin in drug-naïve patients with T2D. This epigenetic tool may be further developed to help patients with T2D receive an optimal therapy.
Aim of the PROCEED Project
The aim of PROCEED is therefore to develop and commercialize our pharmacoepigenetic tool. We expect this biomarker tool to aid clinical decision-making in T2D therapy.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2023 |
Einddatum | 31-3-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Tracking epigenetic plasticity in circulating tumor-derived DNA to monitor drug resistance and guide personalized treatment in cancer patientsEpiGuide aims to develop a blood-based assay to monitor epigenetic mechanisms of drug resistance in cancer, enhancing personalized treatment and early detection of therapy failure. | ERC COG | € 1.998.625 | 2022 | Details |
Circadian Control of Systemic Metabolism in Physiology and Type 2 DiabetesThis project aims to uncover how synchronizing energetic stressors with circadian rhythms can improve metabolism and inform new treatments for type 2 diabetes. | ERC ADG | € 2.500.000 | 2024 | Details |
Glucose variability patterns for precision nutrition in diabetesThe GLUCOTYPES project aims to identify early glycaemic patterns and their dietary influences using advanced technologies to develop precision nutrition strategies for Type 2 diabetes prevention and management. | EIC Pathfinder | € 3.988.206 | 2024 | Details |
Beta-cell recovery to counter diabetesDiogenX aims to cure Type 1 Diabetes by regenerating pancreatic beta-cells for autonomous insulin release, with plans to out-license the drug following human clinical proof by 2026. | EIC Accelerator | € 2.500.000 | 2023 | Details |
Tracking epigenetic plasticity in circulating tumor-derived DNA to monitor drug resistance and guide personalized treatment in cancer patients
EpiGuide aims to develop a blood-based assay to monitor epigenetic mechanisms of drug resistance in cancer, enhancing personalized treatment and early detection of therapy failure.
Circadian Control of Systemic Metabolism in Physiology and Type 2 Diabetes
This project aims to uncover how synchronizing energetic stressors with circadian rhythms can improve metabolism and inform new treatments for type 2 diabetes.
Glucose variability patterns for precision nutrition in diabetes
The GLUCOTYPES project aims to identify early glycaemic patterns and their dietary influences using advanced technologies to develop precision nutrition strategies for Type 2 diabetes prevention and management.
Beta-cell recovery to counter diabetes
DiogenX aims to cure Type 1 Diabetes by regenerating pancreatic beta-cells for autonomous insulin release, with plans to out-license the drug following human clinical proof by 2026.