Novel therapeutic platform for aggressive lymphoma: NanoLymphoma
NanoLymphoma aims to develop a novel therapeutic platform using nanofilaments to cluster multiple lymphoma targets, enhancing tumor cell death and providing a promising treatment for aggressive B-cell lymphoma.
Projectdetails
Introduction
Immunotherapy using antibodies targeting the cell surface has led to important clinical advances in patients with cancer, exemplified by CD20-antibodies that are first-line treatment in patients with B-cell lymphoma. However, diffuse large B-cell lymphoma (DLBCL), the most common and aggressive form of B-cell lymphoma worldwide, is still incurable in 40% of patients.
Prognosis and Need for Novel Therapies
These patients have poor prognosis due to treatment failure or relapse upon therapy with CD20-antibodies (260,000 mortalities worldwide in 2020). Thus, there is an urgent need for novel therapies to overcome resistance and enhance anti-tumor activities in patients with aggressive B-cell lymphoma.
Development of NanoLymphoma
We developed nanofilaments that can efficiently cluster multiple lymphoma membrane targets (CD20, and new targets: CD22, CD37) to induce potent tumor cytotoxicity. This new therapeutic platform ("NanoLymphoma") represents a powerful strategy since this approach is independent from genetic cancer subtypes and is broadly applicable in molecular heterogeneous B-cell lymphoma subtypes.
Evaluation and Validation
NanoLymphoma will evaluate and validate the technical and commercial feasibility of its new therapeutic platform to target human lymphoma cells and prepare for clinical translation to patients with DLBCL.
Objectives of NanoLymphoma
NanoLymphoma will:
- Show that clustering of therapeutic targets on the surface of tumor cells potently induces tumor cell death.
- Perform market and business case analyses to ensure commercial feasibility and entry to market through Simmunext Biotherapeutics.
Expected Outcomes
NanoLymphoma is expected to outperform conventional anti-CD20 antibody treatment in patients with aggressive lymphoma.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 28-2-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- STICHTING RADBOUD UNIVERSITAIR MEDISCH CENTRUMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapiesThis project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations. | ERC STG | € 1.844.248 | 2024 | Details |
Clinical validation of NANO-PL: a hydrogel-based formulation of a small molecule for a highly targeted therapy against Glioblastoma Multiforme (GBM)NANO-PL is a hydrogel-based, one-time treatment for glioblastoma that shows promising safety and efficacy, including tumor eradication and improved survival rates in preclinical models. | EIC Accelerator | € 2.499.999 | 2024 | Details |
RESTORING IMMUNITY CONTROL OF GI CANCERSTIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization. | EIC Transition | € 2.007.750 | 2025 | Details |
Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapies
This project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations.
Clinical validation of NANO-PL: a hydrogel-based formulation of a small molecule for a highly targeted therapy against Glioblastoma Multiforme (GBM)
NANO-PL is a hydrogel-based, one-time treatment for glioblastoma that shows promising safety and efficacy, including tumor eradication and improved survival rates in preclinical models.
RESTORING IMMUNITY CONTROL OF GI CANCERS
TIMNano aims to develop a novel cancer immunotherapy platform using targeted biodegradable nanoparticles to enhance immune responses against gastrointestinal cancers, progressing through clinical trials and commercialization.