Nanoengineered particles for enhanced cancer radiotherapy

ENCANT aims to enhance cancer radiotherapy using biocompatible high-Z nanoparticles to improve treatment precision, reduce radiation dose, and minimize adverse effects for better patient outcomes.

Subsidie
€ 150.000
2025

Projectdetails

Introduction

Current cancer research efforts are focused on obtaining targeted therapies, with greater precision, that lead to improved patient survival, with fewer adverse effects to ensure a better quality of life. ENCANT (nanoengineered particles for ENhanced CANcer radioTherapy) will contribute to this aim by developing new therapeutic agents based on biocompatible nanoparticles bearing high atomic number (Z) elements, which will enhance external beam radiotherapy (EBRT) effect on cancer tissue. This will allow the use of a lower radiation dose, consequently lowering adverse effects related to radiotherapy lack of specificity.

Nanoparticle Design

The physicochemical properties of the NPs can be rationally designed according to different needs.

  • NPs will be functionalized to increase their blood circulation time.
  • They will facilitate their accumulation in the tumoural tissue.

Testing and Evaluation

NPs will be tested in vivo to describe toxicity ranges, targeting efficiency, and their therapeutic effect with external beam radiotherapy using in vivo cancer models.

Focus and Adaptability

ENCANT will initially focus on high-Z NPs for prostate cancer (PC).

  • Nevertheless, their adaptability should allow for use in other tumour types, thus expanding their range of application.

Goals

ENCANT aims to improve and expand oncology treatment options available to cancer patients, thus providing them a more personalized treatment.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-1-2025
Einddatum30-6-2026
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
  • FUNDACIO PRIVADA INSTITUT D'INVESTIGACIO ONCOLOGICA DE VALL-HEBRON (VHIO)

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach

PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.

€ 2.740.675
ERC STG

Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trials

This project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells.

€ 1.948.125
ERC STG

Engineering lipid nanoparticles to target and escape the endosome, deliver their cargo and perform better as breast cancer therapies

This project aims to enhance LNP-mRNA nanomedicine efficacy for advanced breast cancer by improving endosomal escape through nanoscale engineering and tailored formulations.

€ 1.844.248
EIC Pathfinder

Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.

NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy.

€ 5.972.875