Monitoring crustal stress state frOm 4D sEismic iMaging

The project aims to develop and distribute an open-source software for monitoring crustal stress and structure changes in volcanic fields, enhancing eruption and earthquake forecasting while targeting commercial applications.

Subsidie
€ 150.000
2025

Projectdetails

Introduction

Tectonically active crustal settings such as volcanic fields and seismogenic fault systems are characterized by evolving stress critical conditions that can be detected by continuously measuring isotropic and, more importantly, anisotropic elastic properties. This is because these observables are strongly sensitive to the opening of fractures and to the infiltration and migration of magma and crustal fluids, which are more prominent before major volcanic eruptions and earthquakes.

Project Overview

With this respect, the team members of the ERC StG 758199 NEWTON are currently finalizing a novel 4D seismic imaging technique that allows the automatic detection of relevant changes in the crustal isotropic and anisotropic structural patterns and, by inference, of the crustal stress state.

Methodology

The new seismic inversion strategy has been tested with synthetic and real seismic datasets from the Etna volcanic field, with results indicating that it can detect robust changes in seismic anisotropy related to variations in the crustal stress state preceding volcanic eruptions and local earthquakes.

Focus of MODEM Activities

Given the current limited capacity to determine the evolving plumbing system dynamics (which, in turn, hampers the forecasting of major paroxysmal events), the activities of MODEM will focus on the development and distribution to volcano observatories of an open-source software which will include the novel methodology for monitoring the crustal structure and stress state evolution in volcanic fields.

Software Validation and Dissemination

The software will be firstly validated and integrated with the monitoring apparatus of the Etna volcano, and subsequently disseminated over other European and international volcano observatories.

Future Goals

As the monitoring system can be applied to any crustal setting, our future goal is to commercialize the software, providing a service to oil and geothermal companies interested in characterizing time-dependent fracturing patterns and fluid/brine/oil distribution in economically sensitive fields.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-10-2025
Einddatum31-3-2027
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • UNIVERSITA DEGLI STUDI DI PADOVApenvoerder

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

ERC STG

Monitoring megathrust faults with abyssal distributed acoustic sensing

This project aims to enhance earthquake prediction and early warning systems in Chile by using Distributed Acoustic Sensing to monitor fault activity through a dense ocean-bottom seismic observatory.

€ 2.134.970
ERC STG

What is controlling plate motions over the minutes to decades timescale?

This project aims to analyze transient tectonic motions globally using GNSS data and advanced modeling to understand their relationship with earthquake precursors and fault dynamics.

€ 1.851.160
ERC COG

Role of fluids in rock deformation and the earthquake cycle

This project aims to quantify the effects of fluids on rock behavior and seismicity in the lithosphere through laboratory experiments, enhancing understanding of fault dynamics and plate tectonics.

€ 2.470.873
ERC SyG

Assessing the role of hydrothermal alteration on volcano morphology, instability, and unpredictable volcanic hazards

The ROTTnROCK project aims to enhance volcanic hazard assessment by studying hydrothermal alteration processes to improve early warning systems and mitigate disaster risks from eruptions.

€ 9.989.653