Membrane Electrode Assembly for the High Pressure Electrochemical Conversion of CO2 to C2H4
The HIPCEO2 project aims to develop a high-pressure electrolyzer prototype using novel Cu-based catalysts for efficient CO2 conversion to ethylene, enhancing selectivity and stability.
Projectdetails
Introduction
The electrochemical conversion of CO2 to chemical fuels is a promising technology for recycling CO2 and closing the carbon cycle. Among the different products of the electrochemical reduction of CO2, multicarbon (C2+) products are more desirable because of their high energy density and high market price.
Market Potential
Among these products, ethylene is widely used for the production of raw materials and has a market price around 1000€/ton, which suggests a relatively low threshold towards profitability.
Challenges
The development of such a technology to convert CO2 to C2H4 is, however, limited by:
- The lack of selectivity and efficient catalysts to drive the reaction.
- CO2 mass transportation to the active sites, which limits the conversion rate.
Progress Made
During the course of our ERC-StG 2D-4-CO2 project, we have developed Cu-based electrocatalysts modified with aromatic functions. These catalysts demonstrated strongly improved selectivity for ethylene at industry-relevant current densities of 300 mA cm-2.
Project Aim
The aim of the HIPCEO2 project is to apply the novel Cu-based catalyst developed in our group in a high-pressure membrane electrode assembly electrolyzer.
Specific Goals
Our specific goals are to:
- Realize a prototype with an electrode size of 100 cm².
- Achieve verified stability of 1000 hours.
- Use the prototype as a demonstrator to reach out to potential end-users and future partners.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 30-4-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nanoscale Advance of CO2 ElectroreductionNASCENT aims to enhance CO2 electroreduction efficiency by innovating catalyst designs and interfaces, enabling sustainable production of key chemicals like C2 and C3+ from CO2. | ERC STG | € 1.944.060 | 2023 | Details |
In-depth understanding of multiphase mass transfer in CO2 electrolyzers through application of engineered, ordered reactor componentsTRANSCEND aims to revolutionize CO2 electrolyzers by developing an integrated design for improved mass transport, enhancing efficiency and durability for sustainable chemical and fuel production. | ERC COG | € 1.999.588 | 2024 | Details |
Lab-to-tech transition of the current best low temperature electrolyser technology for CO2 reduction to CO using solar energyThe project aims to develop a containerized CO2 electrolyser unit powered by solar energy to produce valuable chemicals, facilitating commercialization and supporting the European Green Deal's climate goals. | EIC Transition | € 2.373.125 | 2022 | Details |
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light OlefinsECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy. | EIC Pathfinder | € 2.519.031 | 2023 | Details |
Nanoscale Advance of CO2 Electroreduction
NASCENT aims to enhance CO2 electroreduction efficiency by innovating catalyst designs and interfaces, enabling sustainable production of key chemicals like C2 and C3+ from CO2.
In-depth understanding of multiphase mass transfer in CO2 electrolyzers through application of engineered, ordered reactor components
TRANSCEND aims to revolutionize CO2 electrolyzers by developing an integrated design for improved mass transport, enhancing efficiency and durability for sustainable chemical and fuel production.
Lab-to-tech transition of the current best low temperature electrolyser technology for CO2 reduction to CO using solar energy
The project aims to develop a containerized CO2 electrolyser unit powered by solar energy to produce valuable chemicals, facilitating commercialization and supporting the European Green Deal's climate goals.
Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light Olefins
ECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy.