Innovative Digital Twins for Advanced Combustion Technologies
The project aims to develop a digital twin for predicting combustion processes, enhancing the design of sustainable energy systems while reducing R&D costs and time.
Projectdetails
Introduction
Significant adoption of renewable sources will be witnessed in future years to meet the long-term objective of CO2 neutrality and mitigate the effects of global warming. While electrification will play a key role in the transition to a sustainable energy system, combustion processes will remain part of the picture, requiring sustainable combustion technologies and renewable synthetic fuels.
Digital Combustion Infrastructure
The design and development of novel combustion technologies in power and heat generation, transportation, and manufacturing processes require developing a digital combustion infrastructure. This infrastructure promises to bring down the needed R&D investments for meeting the tightening environmental regulations.
Challenges in Combustion Prediction
However, predicting combustion processes is a complex and challenging task. The tools available today fall very short of what is needed for new design and optimisation.
Innovation: Digital Twin
We made an innovation that formed a digital twin, combining theory, experiments, simulations, and machine learning into one unique combination. With our approach, we can predict complex multi-physics systems that can be used for designing combustion-based energy generation applications for growing markets.
Expected Impact
Our approach is expected to impact significantly new combustion systems while reducing the resources and time for designing such fuel-flexible, non-polluting, and energy-efficient systems.
Commercialisation Potential
This is expected to have vast commercialisation potential in the industries:
- Designing environmentally friendly energy systems
- Supplying digital tools for the design processes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 28-2-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITE LIBRE DE BRUXELLESpenvoerder
- DAY ONE SOCIETA A RESPONSABILITA LIMITATA
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient CombustionThe project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications. | ERC ADG | € 2.498.727 | 2022 | Details |
Taming Combustion Instabilities by Design PrinciplesTACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions. | ERC STG | € 1.499.993 | 2023 | Details |
SafE and reliabLE COmbustion Technologies powered by HydrogenSELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications. | ERC ADG | € 2.499.489 | 2023 | Details |
REinforcement TWInning SysTems: from collaborative digital twins to model-based reinforcement learningThe Re-Twist project aims to develop a novel Reinforcement Twinning framework that integrates machine learning with engineering to optimize systems like wind turbines and drones for societal benefits. | ERC STG | € 1.500.000 | 2025 | Details |
Hydrogen-Based Intrinsic-Flame-Instability-Controlled Clean and Efficient Combustion
The project aims to enhance combustion efficiency and stability of hydrogen-based fuels by analyzing intrinsic flame instabilities and developing a modeling framework for practical applications.
Taming Combustion Instabilities by Design Principles
TACOS aims to revolutionize gas turbine design by utilizing exceptional points to enhance combustion stability and fuel flexibility, leading to safer, low-emission energy and aviation solutions.
SafE and reliabLE COmbustion Technologies powered by Hydrogen
SELECT-H aims to enhance hydrogen combustion safety and reliability by developing knowledge, simulation tools, and solutions for transitioning to low-carbon hydrogen systems in various applications.
REinforcement TWInning SysTems: from collaborative digital twins to model-based reinforcement learning
The Re-Twist project aims to develop a novel Reinforcement Twinning framework that integrates machine learning with engineering to optimize systems like wind turbines and drones for societal benefits.