HyperSpectral Terahertz neAR-field nanoscope exploiting miniaturized frequency-combs
STAR aims to develop a compact, low-cost, detector-less THz hyperspectral nanoscope for industrial applications, enhancing imaging capabilities across various interdisciplinary fields.
Projectdetails
Introduction
STAR aims to increase the technology readiness level of the state-of-the-art graphene-integrated, miniaturized frequency comb (FC) quantum cascade laser (QCL), operating at terahertz (THz) frequencies, devised under the ERC consolidator grant SPRINT. The project also seeks to develop a detector-less sensing/imaging demonstrator apt for the translation of this technology to industrial end-users.
Project Focus
The focus is on providing a compact, low-cost, hyperspectral, nanoscale imaging system, which creates amplitude- and phase-resolved images. This system employs the non-invasive broadband THz-frequency light of a metrological frequency-comb source, without making use of an external detector.
Technical Specifications
This nanoscope ensures:
- 40-100 nm spatial resolution, >100 times smaller than the THz free-space wavelength
- Coherent detection and mapping of the THz optical response of materials over the continuous 2-5 THz bandwidth
- Fully stabilized THz QCL FC, with noise-equivalent power <10pW/Hz
- Fast (<ms/pixel) acquisition rates, far exceeding the performances of commercial time-domain spectroscopy near-field systems
Specific Objectives
Specific objectives are to:
- Manufacture a compact, portable, and user-friendly THz hyperspectral nanoscope
- Validate its core technology with commercial end-users and at trade shows
- Evaluate opportunities for THz FC self-detection nanoscopy
- Identify novel end-user applications, with a detailed market, IPR, and regulatory compliance study
By the end of this program, I plan to identify a solid exploitation route by directly interacting with THz instrument producers and targeted commercial end-users.
Long-term Impact
Pushing forward a solid commercial exploitation route, STAR prospects new directions and long-term impacts on many interdisciplinary fields, including:
- Engineering
- Biology
- Medicine
- Cultural heritage
- Material science
- Quantum technology
This project operates in a frontier frequency domain where electronics and photonics find a fascinating convergence.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-12-2022 |
Einddatum | 31-5-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CONSIGLIO NAZIONALE DELLE RICERCHEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Terahertz HyperSpectral low-Cost fAst GrapheNe CameraTeraScan aims to develop a compact, low-cost hyperspectral imaging system using ultrafast graphene detectors for real-time THz applications, targeting industrial integration and commercialization. | ERC Proof of... | € 150.000 | 2024 | Details |
Photonic Spectrum Analyzer for the Terahertz Spectral DomainPhoSTer THz aims to develop affordable photonic spectrum analyzers for the Terahertz range to enhance component development for 6G and other applications, overcoming limitations of current electronic systems. | ERC Proof of... | € 150.000 | 2022 | Details |
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materialsThe project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales. | ERC Starting... | € 1.572.500 | 2025 | Details |
Engineering QUAntum materials for TErahertz applicationsThis project aims to leverage the ultrafast thermodynamic properties of quantum materials to develop advanced THz technologies, enhancing performance and capabilities in the terahertz regime. | ERC Consolid... | € 1.999.233 | 2024 | Details |
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devicesSMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices. | ERC Advanced... | € 2.496.206 | 2024 | Details |
Terahertz HyperSpectral low-Cost fAst GrapheNe Camera
TeraScan aims to develop a compact, low-cost hyperspectral imaging system using ultrafast graphene detectors for real-time THz applications, targeting industrial integration and commercialization.
Photonic Spectrum Analyzer for the Terahertz Spectral Domain
PhoSTer THz aims to develop affordable photonic spectrum analyzers for the Terahertz range to enhance component development for 6G and other applications, overcoming limitations of current electronic systems.
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materials
The project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales.
Engineering QUAntum materials for TErahertz applications
This project aims to leverage the ultrafast thermodynamic properties of quantum materials to develop advanced THz technologies, enhancing performance and capabilities in the terahertz regime.
Strong light-matter coupled ultra-fast and non-linear quantum semiconductor devices
SMART-QDEV aims to innovate mid-IR technologies by leveraging strong light-matter coupling in semiconductor heterostructures to develop ultra-fast, non-linear quantum devices.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platformNanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs. | EIC Transition | € 2.489.571 | 2022 | Details |
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platformThe NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology. | EIC Transition | € 2.489.162 | 2023 | Details |
moleculAR maTerials for on-chip intEgrated quantuM lIght sourceSARTEMIS aims to develop versatile metallorganic photon sources for quantum technologies, enhancing performance and integration through advanced synthesis and nano-photonics engineering. | EIC Pathfinder | € 3.247.100 | 2023 | Details |
The world’s most sensitive absorption microscopeQlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027. | EIC Transition | € 2.480.000 | 2024 | Details |
Nano meta components for electronic smart wireless systemsSMARTWAY aims to develop innovative radar sensor architectures using 2D materials and metamaterials for enhanced performance and energy efficiency in IoT applications, culminating in two industry-ready demonstrators. | EIC Transition | € 2.457.765 | 2023 | Details |
Photonic chip based high-throughput, multi-modal and scalable optical nanoscopy platform
NanoVision aims to revolutionize optical nanoscopy with an affordable, compact, and high-throughput photonic-chip solution, enhancing accessibility and flexibility for research and clinical labs.
Revolutionizing Spatial Biology with a cutting-edge Multi-Scale Imaging platform
The NanoSCAN project aims to develop the SAFe-nSCAN platform for high-resolution 3D tissue analysis, enhancing molecular profiling and advancing personalized therapies in immuno-oncology.
moleculAR maTerials for on-chip intEgrated quantuM lIght sourceS
ARTEMIS aims to develop versatile metallorganic photon sources for quantum technologies, enhancing performance and integration through advanced synthesis and nano-photonics engineering.
The world’s most sensitive absorption microscope
QlibriNANO aims to validate and enhance the world's most sensitive absorption microscope for nanoscale matter analysis, targeting market readiness and scalability by 2027.
Nano meta components for electronic smart wireless systems
SMARTWAY aims to develop innovative radar sensor architectures using 2D materials and metamaterials for enhanced performance and energy efficiency in IoT applications, culminating in two industry-ready demonstrators.