High-Throughput Production of Extracellular Vesicles from Organoids under Rotating Motion
The project aims to develop a streamlined system for high-throughput production of extracellular vesicles (EVs) by integrating controlled cell configurations to enhance therapeutic potential.
Projectdetails
Introduction
Extracellular vesicles (EVs) have emerged as pivotal regulators of both physiological homeostasis and pathological conditions, including cancer and regenerative diseases. They have recently been pinpointed as central effectors in the therapeutic capabilities of their parent cells.
Current Challenges
Nevertheless, the therapeutic market of EVs still has significant potential for further development. Specifically, the following challenges remain:
- EV Production Methods: Robust, scalable, and high-yield production methods are still unattainable, especially with the minimum cell material.
- Versatility of Existing Technologies: Current technologies are not adequately versatile to accommodate different types of producer cells. This is particularly relevant because the biological makeup of the EVs, and in turn their therapeutic potential, strongly depend on the state of the parental cells when stimulated.
Project Aim
Here, we aim to integrate tight control of produced cells' configuration with high-throughput production of EVs in a streamlined system.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-10-2024 |
Einddatum | 31-3-2026 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Extracellular vesicles-mediated cross-talk during human brain development and diseaseExoDevo aims to investigate the role of extracellular vesicles in brain development and their impact on neurodevelopmental disorders using advanced multi-omics and imaging techniques. | ERC COG | € 1.995.000 | 2023 | Details |
Decoding Extracellular Vesicle-mediated organ crosstalk in vivoThis project aims to investigate hepatic extracellular vesicle-mediated inter-organ communication in vivo using a transparent zebrafish model to enhance understanding of their role in health and disease. | ERC STG | € 1.500.000 | 2023 | Details |
TowArd demoCRatization Of ev-BAsed TherapiesEVerZom aims to revolutionize EV manufacturing with a patented scalable process, targeting GMP compliance and commercial production to lead the European market in clinical applications. | EIC Accelerator | € 1.700.000 | 2022 | Details |
Geintegreerd systeem voor fractionering karakterisatie en kwantificatie van extracellulaire blaasjes en hun inhoudCelnext Biotechnologies onderzoekt de haalbaarheid van een geïntegreerd microfluidisch systeem met optische biosensoren voor gestandaardiseerde isolatie en analyse van extracellulaire blaasjes (EBs). | MIT Haalbaarheid | € 20.000 | 2021 | Details |
Extracellular vesicles-mediated cross-talk during human brain development and disease
ExoDevo aims to investigate the role of extracellular vesicles in brain development and their impact on neurodevelopmental disorders using advanced multi-omics and imaging techniques.
Decoding Extracellular Vesicle-mediated organ crosstalk in vivo
This project aims to investigate hepatic extracellular vesicle-mediated inter-organ communication in vivo using a transparent zebrafish model to enhance understanding of their role in health and disease.
TowArd demoCRatization Of ev-BAsed Therapies
EVerZom aims to revolutionize EV manufacturing with a patented scalable process, targeting GMP compliance and commercial production to lead the European market in clinical applications.
Geintegreerd systeem voor fractionering karakterisatie en kwantificatie van extracellulaire blaasjes en hun inhoud
Celnext Biotechnologies onderzoekt de haalbaarheid van een geïntegreerd microfluidisch systeem met optische biosensoren voor gestandaardiseerde isolatie en analyse van extracellulaire blaasjes (EBs).