Explainable Anomaly Detection for Safeguarding and Enhancing Modern Data Industry

The ExplainableAD project aims to develop an advanced eXplainable Anomaly Detection system for evolving data streams, providing actionable insights to enhance fraud detection and operational efficiency across various industries.

Subsidie
€ 150.000
2025

Projectdetails

Introduction

In the ExplainableAD project, we address the problem of eXplainable Anomaly Detection (XAD) on data streams with evolving, previously unknown, complex anomaly types. To bridge the gap between growing demands in the data industry and severely limited industry-grade solutions available today, we propose a breakthrough XAD system that offers unprecedented capabilities for safeguarding digital services.

System Integration

To this end, it seamlessly integrates:

  • Deep learning-based anomaly detection (AD), which unlocks the power of detecting evolving, previously unknown, complex anomaly types.
  • Explanation discovery (ED), which overcomes the non-interpretability of deep learning by returning human-readable, actionable insights.

Research and Development Activities

To establish a pathway from fundamental research to innovation, we will conduct:

  1. Additional research activities on automated model selection, scalable execution, and data visualization.
  2. Prototyping, benchmarking analysis, and system demonstration.
  3. Large-scale use case studies with industry partners, leveraging ongoing collaborations and building new use cases across banking, finance, and healthcare domains.
  4. Market analysis and market entry strategy development to enable technology transfer.

Impact on End Users

Our XAD system will have a direct impact on end users across a variety of sectors, including:

  • Fraud analysts in banking and financial services to combat ever-growing, complex fraud types.
  • IT departments and cloud services to manage malfunction and performance challenges proactively.
  • Biomedical researchers and staff to benefit from enhanced diagnostic accuracy and improved confidence.

Project Leadership

The PI will bring extensive experience from the ERC CoG grant, including a large number of publications and a highly skilled team, to this project. With a proven track record of delivering cutting-edge solutions to critical challenges faced by enterprises and society, she will leverage her strong industry connections to facilitate the transition from research to innovation.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-3-2025
Einddatum31-8-2026
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • ECOLE POLYTECHNIQUEpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC Starting...

Interpretable Artificial Intelligence across Scales for Next-Generation Cancer Prognostics

This project aims to enhance cancer prognosis and treatment selection by applying advanced machine learning to whole-slide images, addressing key knowledge gaps and improving model explainability.

€ 1.494.810
ERC Proof of...

Building the First Automated Causal Discovery Platform

AutoCD aims to develop an automated causal discovery software to enhance expert productivity and accessibility, while validating its commercial potential with industry partners.

€ 150.000
ERC Advanced...

Novel biomarkers for improving diagnostics, prognostics, and treatments of Alzheimer’s disease

ADVANCE-AD aims to enhance Alzheimer's diagnostics and treatment by developing cost-effective blood-based biomarkers and algorithms for early detection and intervention in pre-symptomatic patients.

€ 2.500.000
ERC Proof of...

AI-based leukemia detection in routine diagnostic blood smear data

Develop LeukoScreen, an AI software to enhance the speed and accuracy of acute promyelocytic leukemia diagnosis, improving patient outcomes and optimizing laboratory workflows.

€ 150.000
ERC Starting...

New directions for deep learning in cancer research through concept explainability and virtual experimentation.

NADIR aims to enhance deep learning in cancer research by integrating biological knowledge to extract concepts and verify mechanisms, focusing on tumor-immune interactions in colorectal and gastric cancer.

€ 1.498.750

Vergelijkbare projecten uit andere regelingen

Mkb-innovati...

eXplainable AI in Personalized Mental Healthcare

Dit project ontwikkelt een innovatief AI-platform dat gebruikers betrekt bij het verbeteren van algoritmen via feedbackloops, gericht op transparantie en betrouwbaarheid in de geestelijke gezondheidszorg.

€ 350.000
Mkb-innovati...

ALGORITHM

Advanced Solutions Nederland onderzoekt de haalbaarheid van ALGORITHM, een AI-gestuurd systeem voor predictive maintenance in de industrie, met innovatieve sensoren en analysemethoden.

€ 20.000
Mkb-innovati...

Ontwikkeling AI gebaseerd locatie dataplatform

Ontwikkeling van een innovatief AI-gestuurd product voor beeldanalyse en datacollectie ter vervanging van handmatige processen, met potentieel voor nieuwe diensten en concurrentievoordeel.

€ 199.000
Mkb-innovati...

Enabling Technology for Data Valorization

Het project ontwikkelt een softwareproof of principle voor data valorisatie in de zorg, om efficiëntere dienstverlening en betere zorgresultaten te realiseren door nieuwe verbanden in medische data te ontdekken.

€ 173.500
EIC Accelerator

Human-Centric AI platform for heALth and Life sciences

Abzu ApS aims to revolutionize AI in pharma with the QLattice, a user-friendly, explainable platform that enhances R&D efficiency and reduces costs, supported by EIC funding.

€ 2.495.099