Epigenetic profiling of menstrual blood for precision cancer detection and prevention
The EpiPrecise project aims to refine a cellular deconvolution algorithm for developing novel epigenetic tests to improve cancer detection and prevention strategies, particularly for women's cancers.
Projectdetails
Introduction
Cancer has overtaken cardiovascular disease as the number one cause of mortality in high-income countries. Cancer incidence is increasing across the globe. Morbidity and mortality from women’s cancers, particularly breast, ovarian, and endometrial cancers, follow or exceed these general trends in cancer incidence.
Approach to Tackling Cancer
Tackling this growing cancer burden requires a multifactorial approach, including:
- Understanding the fundamental drivers of cancer development.
- Improving methods for detecting earlier those forms of cancer with the worst prognosis.
- Predicting a person’s risk of developing cancer.
- Identifying appropriate targets for preventing cancer.
Indeed, one of the biggest obstacles in identifying tailored cancer prevention strategies is a lack of surrogate readout markers reflecting and integrating an individual’s response to the cancer-initiating and cancer-promoting factors that they are exposed to during their lifetime.
Research Focus
Our research delivers novel epigenetic tests relating to each of these key areas, with an emphasis on women’s cancers and those who are at an increased risk for cancer due to their underlying genetics, such as women with BRCA1 or BRCA2 mutations and women with Lynch Syndrome.
Cellular Deconvolution Algorithm
Central to the discovery and development of the epigenetic tests is a cellular deconvolution algorithm that is used to calculate the proportions of cell types within complex, mixed samples such as cervical swabs.
Expansion of the Algorithm
In order to broaden the clinical utility of the tests and explore new applications, refinement and expansion of this cellular deconvolution algorithm is now required. The expansion will include cell types in menstrual blood, which is an important and understudied clinical sample type.
EpiPrecise Project
The EpiPrecise project will deliver this refined and expanded algorithm and apply it to a test case in an area of high unmet clinical need. The refined algorithm will then be applied across the research portfolio and shared.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 30-9-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITAET INNSBRUCKpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Detecting epigenetic biomarkers in the blood for non-invasive precision oncologyDevelop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution. | ERC STG | € 1.500.000 | 2022 | Details |
Tracking epigenetic plasticity in circulating tumor-derived DNA to monitor drug resistance and guide personalized treatment in cancer patientsEpiGuide aims to develop a blood-based assay to monitor epigenetic mechanisms of drug resistance in cancer, enhancing personalized treatment and early detection of therapy failure. | ERC COG | € 1.998.625 | 2022 | Details |
Towards early cancer detection and tumor classification using epigenomic biomarkers in bloodEpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays. | ERC STG | € 1.499.999 | 2024 | Details |
Comprehensive Platform for the Functional Characterization of Cancer Epigenetics and DiagnosisEpiCancer aims to develop single-cell epigenetic analysis tools to understand cancer heterogeneity and improve diagnostics through blood tests, enhancing early detection and monitoring of tumors. | ERC STG | € 1.500.000 | 2024 | Details |
Detecting epigenetic biomarkers in the blood for non-invasive precision oncology
Develop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution.
Tracking epigenetic plasticity in circulating tumor-derived DNA to monitor drug resistance and guide personalized treatment in cancer patients
EpiGuide aims to develop a blood-based assay to monitor epigenetic mechanisms of drug resistance in cancer, enhancing personalized treatment and early detection of therapy failure.
Towards early cancer detection and tumor classification using epigenomic biomarkers in blood
EpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays.
Comprehensive Platform for the Functional Characterization of Cancer Epigenetics and Diagnosis
EpiCancer aims to develop single-cell epigenetic analysis tools to understand cancer heterogeneity and improve diagnostics through blood tests, enhancing early detection and monitoring of tumors.