Diffractive Optical Element Fabrication based on 3D Printing

The project aims to revolutionize Diffractive Optical Element fabrication by adapting a 3D printing method for solid DOEs, reducing costs and production time while enhancing accessibility.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Diffractive Optical Elements (DOEs) are used to shape the wavefront of incident light in complex patterns and are ubiquitous across optical applications, ranging from laser processing through lithography to communication and imaging. Despite their popularity, fabricating DOEs is non-trivial, mostly due to their nanoscale-precision requirements, necessitating highly precise, expensive, and cumbersome fabrication methods (typically using photolithography), which are also limited in the design flexibility they allow.

Development of a New Method

During the PI’s ERC-StG, we developed a method to enable simple, fast, and high-quality fabrication of DOEs by combining 3D printing with near-index matching by liquid immersion. This results in DOEs comparable in performance to the state-of-the-art, yet manufactured at a fraction of the cost and time.

Current Limitations

Still, at this point, these DOEs need to be immersed in a small liquid-containing chamber to operate, which prevents mass adoption of the technique by the market.

Goals of the Project

Hence, the main goals of this PoC are:

  1. Adapt our 3D-printing based near-index matching technique to yield fully solid DOEs.
  2. Fabricate and demonstrate several proof-of-concept industry-relevant elements.
  3. Explore various strategies to bring our technique to the market.

Potential Impact

Our technology has the potential to transform the world of DOE fabrication by drastically simplifying the fabrication process, shifting the relevant scales from weeks to hours, from thousands of dollars to a few dollars per element, and finally – alleviating the need for a cleanroom environment. This will significantly democratize the process of DOE fabrication, making it available in low-resource settings.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-1-2023
Einddatum30-6-2025
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • TECHNION - ISRAEL INSTITUTE OF TECHNOLOGYpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Fluidic Shaping of Optical Components on Earth and in Space

The project aims to develop Fluidic Shaping for rapid, high-precision optical component fabrication using liquid interfaces, enhancing accessibility in various fields including space exploration and astronomy.

€ 2.340.000
ERC ADG

Design and Engineering of Optoelectronic Metamaterials

This project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum.

€ 2.500.000
EIC Transition

3D Printed Micro-Optics to the Market

The 3DPrintoptixMarket project aims to commercialize innovative 3D printed micro-optics for AR/VR applications, partnering with Viewpointsystem to develop a cost-effective demonstrator for a rapidly growing market.

€ 2.496.602
ERC STG

3D integrated photonic nanostructures with Giant optical nonlinearity

3DnanoGiant aims to develop innovative nonlinear photonic materials using liquid crystals for efficient all-optical signal processing in integrated photonic devices.

€ 1.500.000