Development of a nanobody-based, slide-free approach for 3D-Histological analysis of the spatial tumor microenvironment using lightsheet imaging
This project aims to revolutionize cancer histology through a nanobody-based 3D-histopathology approach, enabling rapid, spatially accurate analysis of tumor microenvironments for improved diagnosis and patient stratification.
Projectdetails
Introduction
For histopathological analysis and subsequent diagnosis of diseased tissues, a rapid, accurate histopathological and genetic analysis of biopsied tissues is essential. However, traditional 2-dimensional slide-based histopathological analysis does not represent spatial tissue structures and molecular targets sufficiently. This limitation aggravates an accurate and spatial analysis of tissue, a detailed description of the tumor microenvironment, as well as patient stratification.
Proposed Solution
To overcome these limitations, I propose an innovative, nanobody-based 3D-histopathology approach using non-destructive volumetric lightsheet microscopy. This approach bears the potential to revolutionize the way pathological analysis of tumor samples is conducted.
Advantages of 3D-Histopathology
In comparison to conventional 2D-pathology, non-destructive 3D-histopathology allows:
- Rapid slide-free histological imaging of an entire tissue sample.
- Volumetric analysis of diagnostic relevant structures such as immune cells and vessels.
- Improved spatial analysis of cell distribution relevant to studying the microenvironment.
Methodology
To achieve this, we will generate nanobodies for improved wholemount tissue staining of the immune system as well as tumor-relevant markers. By labeling nanobodies with cleavable fluorescent dyes using click chemistry and integrating linkers for stoichiometric and directed labeling, we will be able to perform several rounds of multiplex staining of the identical sample. This will provide cutting-edge diagnostic phenotyping of the specimen.
Non-Destructive Nature
Due to the non-destructive nature of the optical-sectioning methodology, the sample will remain available for downstream applications such as molecular diagnostics of the previously imaged specimen.
Conclusion
In summary, this innovative project holds great potential to revolutionize cancer histology by providing a spatial and detailed description of the tumor microenvironment, improving the diagnosis of tumor samples, and consequently enhancing patient stratification and outcome.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 30-6-2026 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet MicroscopyThis project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs. | ERC ADG | € 2.293.558 | 2022 | Details |
Advanced X-ray Energy-sensitive Microscopy for Virtual HistologyThis project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions. | ERC COG | € 2.000.000 | 2023 | Details |
Lensless label-free nanoscopyThis project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers. | ERC STG | € 1.500.000 | 2024 | Details |
In vivo Immunofluorescence-Optical Coherence TomographyDevelop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease. | ERC ADG | € 2.500.000 | 2025 | Details |
Nanoscale Isotropic 3D Resolution using Omni-view Structured Light Sheet Microscopy
This project aims to revolutionize biological imaging by developing a novel optical architecture for super-resolution microscopy that enhances 3D imaging resolution and sample longevity without trade-offs.
Advanced X-ray Energy-sensitive Microscopy for Virtual Histology
This project aims to develop a prototype phase-contrast micro-CT scanner for non-invasive 3D histology to enhance volumetric analysis of tissue samples, particularly lung lesions.
Lensless label-free nanoscopy
This project aims to develop deep UV lensless holotomographic nanoscopy for high-resolution, large-field imaging of live cells to enhance understanding of extracellular vesicles as disease biomarkers.
In vivo Immunofluorescence-Optical Coherence Tomography
Develop a high-resolution endoscopic imaging system combining Optical Coherence Tomography and fluorescent antibodies for improved diagnosis and treatment of esophageal cancer and lung disease.