Decoding the Combinatorial Epigenetic Information of the Mammalian Genome with Engineered DNA Duplex Readers
Developing and commercializing user-friendly kits for mapping novel CpG duplex modifications to enhance epigenetics research and cancer biomarker discovery.
Projectdetails
Introduction
In mammalian genomes, epigenetic modifications of the nucleobase cytosine occur in both strands of the DNA duplex in the sequence “CpG”, and they are central regulators of gene expression as well as important cancer biomarkers.
Current Challenges
However, current analytical techniques cannot reveal the combination in which these modifications occur in the two strands of a DNA duplex. The resulting inability to create genomic maps of these “CpG duplex modifications” represents a major roadblock for future developments in epigenetics research and cancer diagnosis.
Project Overview
We have engineered the first affinity enrichment probes for selectively analyzing novel CpG duplex modifications and integrated them into user-friendly and cost-effective kits for genomic mapping.
Development and Commercialization
In this project, we will develop and commercialize two kits for mapping the most important novel CpG duplex modifications consisting of:
- 5-methylcytosine
- 5-hydroxymethylcytosine
These kits will target the epigenetics research and liquid biopsy markets.
Impact
This will provide decisive new impulses for epigenetics research as well as for cancer biomarker discovery and liquid biopsy, both large and rapidly growing markets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 30-4-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAT DORTMUNDpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Detecting epigenetic biomarkers in the blood for non-invasive precision oncologyDevelop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution. | ERC STG | € 1.500.000 | 2022 | Details |
Systematically Dissecting the Regulatory Logic of Chromatin ModificationsThis project aims to systematically investigate the functional impact of chromatin modifications on gene expression using a novel editing platform to enhance precision medicine and understand epigenomic profiles. | ERC COG | € 1.999.565 | 2023 | Details |
Dissecting the cancer epigenome – fundamental lessons from developmental biologyThis project aims to investigate the parallels between cancer epigenetics and early placental development to uncover novel regulatory mechanisms and their implications for disease. | ERC ADG | € 2.487.500 | 2024 | Details |
Towards early cancer detection and tumor classification using epigenomic biomarkers in bloodEpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays. | ERC STG | € 1.499.999 | 2024 | Details |
Detecting epigenetic biomarkers in the blood for non-invasive precision oncology
Develop new non-invasive diagnostic methods for cancer by analyzing epigenetic markers in circulating tumor DNA to improve sensitivity and monitor disease evolution.
Systematically Dissecting the Regulatory Logic of Chromatin Modifications
This project aims to systematically investigate the functional impact of chromatin modifications on gene expression using a novel editing platform to enhance precision medicine and understand epigenomic profiles.
Dissecting the cancer epigenome – fundamental lessons from developmental biology
This project aims to investigate the parallels between cancer epigenetics and early placental development to uncover novel regulatory mechanisms and their implications for disease.
Towards early cancer detection and tumor classification using epigenomic biomarkers in blood
EpiCblood aims to enhance early cancer detection by increasing cancer-specific cf-nucleosomes through innovative histone modification profiling and computational analysis for improved liquid biopsy assays.