BioCHIPS - Biofabricated microfluidcs CHIPS based on self assembling of CNCs to recreate the hierarchical fibrillar structure of human tissues ECM

Biochips aims to develop a high-throughput platform for fabricating cell-laden microtissues with biophysical cues from native ECMs using 3D bioprinting and CNC self-assembly.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

Biochips proposes an innovative bottom-up strategy to directly fabricate cell-laden devices that recreate the unique biophysical cues from the native fibrillar ECMs and allow the design of bioengineered microtissues with arbitrary geometries.

Platform Overview

The proposed platform combines the concepts of matrix-assisted 3D free-form bioprinting with the controlled self-assembly of colloidal cellulose nanocrystals (CNCs) to fabricate cell-laden constructs embedded within its own fibrillar CNC hydrogel device.

High-Throughput Capability

The proposed platform can:

  1. Array multiple independent single organ models in a high-throughput manner (the number will depend on the desired model complexity and well plate used).
  2. Link multiple tissue/organ models together with microfluidic circuits that can be user-defined on their CAD designs.

Features of the BioCHIPS System

The BioCHIPS system enables:

  • High-resolution printing of complex and perfusable multicellular constructs without separating membranes or plastic barriers.
  • Cells to interact through signaling gradients created by compartmentalization in a bioinspired fibrillar matrix, supporting their long-term culture.

Additional Advantages

In addition to optical transparency for real-time monitoring, CNCs hydrogels can be bioorthogonally digested to release the embedded constructs for post-bioprinting analysis and processing. This is a crucial advantage in organ/tissue-on-chip applications.

Applications

Beyond the fabrication of perfusable microfluidic channels and cell-laden chambers for the development of 3D microphysiological systems as in vitro models, the intrinsic characteristics of this bioinspired platform further enable its scale-up to produce tissue-engineered constructs within its own bioreactor for in vitro maturation and biological tests at higher scales.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-11-2022
Einddatum30-4-2024
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIVERSIDADE DO MINHOpenvoerder

Land(en)

Portugal

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Computationally and experimentallY BioEngineeRing the next generation of Growing HEARTs

G-CYBERHEART aims to develop innovative experimental and computational methods for creating adaptable bioengineered hearts to improve treatment for congenital heart disease.

€ 1.497.351
ERC COG

3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput

HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.

€ 2.969.219
MIT R&D Samenwerking

Een polymere microgestructureerde nanowellchip voor de analyse van individuele cellen op basis van microfabricage met behulp van 3D-printtechnologie

Het project ontwikkelt betaalbare, op maat gemaakte micro-3D-geprinte chips voor single-cell analyses ter verbetering van kankerdiagnostiek en gepersonaliseerde therapieën.

€ 167.760
MIT Haalbaarheid

AdDitive mAnufacturing Microfluidica – ADAM

PimBio B.V. ontwikkelt kosteneffectieve microfluïdische chips voor biotechnologie en gezondheidszorg, gericht op klantspecifieke productie om dierproeven te verminderen en geneesmiddelenonderzoek te versnellen.

€ 20.000