Atlas of the Human Deep Brain Nuclei, Connections, and Vasculature
The project aims to create an atlas of human deep brain nuclei and vasculature to enhance deep-brain stimulation outcomes and minimize side effects in movement and neuropsychiatric disorders.
Projectdetails
Introduction
Deep-brain stimulation, DBS in short, is one of the most promising surgical treatments for movement disorders such as Parkinson’s disease (PD), and more recently, neuropsychiatric diseases such as obsessive-compulsive disorder.
DBS Surgery
During DBS surgery, a microelectrode is lowered deep into the brain with the aim to stimulate small subcortical nuclei in order to alleviate disease-related symptoms such as rigidity and tremor as seen in patients with PD.
Side Effects of DBS
Studies using DBS in PD patients show that a suboptimal placement of electrodes in, for example, the Subthalamic Nucleus (STN) or Globus Pallidus (GP), can yield changes in cognitive processes and affective states. These include:
-
Cognitive processes:
- Attention
- Mental speed
- Response inhibition
-
Affective states:
- Depression
- Hypomania
- Anxiety
- Hypersexuality
- Hallucinations
These unwanted side effects of DBS are speculated to be the result of:
- The stimulation of subareas other than the motor zone within these nuclei
- The stimulation of white matter connections
- The dysregulation of blood flow to neighboring areas
Project Aim
Our aim is to create an atlas of the human Deep Brain nuclei, connections, and vasculature (DeepBrainVascu) to substantially improve the outcome of DBS by significantly reducing unwanted side effects.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 31-8-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT VAN AMSTERDAMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Interrogating basal ganglia reinforcement with deep brain stimulation in Parkinson’s disease.ReinforceBG aims to explore dopamine's role in Parkinson's disease through advanced neuromodulation techniques to enhance understanding and develop innovative treatments for motor and cognitive symptoms. | ERC STG | € 1.499.580 | 2023 | Details |
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental HealthThis project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders. | ERC COG | € 1.999.875 | 2025 | Details |
Desynchronizing weak cortical fields during deep brain stimulationDECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects. | ERC STG | € 1.498.914 | 2024 | Details |
Dissecting the biophysical mechanisms of deep brain stimulation using voltage fluorescence microscopyThis project aims to elucidate the cellular mechanisms of deep brain stimulation in epilepsy using a novel optical technique to improve therapeutic protocols for human patients. | ERC STG | € 1.498.729 | 2024 | Details |
Interrogating basal ganglia reinforcement with deep brain stimulation in Parkinson’s disease.
ReinforceBG aims to explore dopamine's role in Parkinson's disease through advanced neuromodulation techniques to enhance understanding and develop innovative treatments for motor and cognitive symptoms.
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health
This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.
Desynchronizing weak cortical fields during deep brain stimulation
DECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects.
Dissecting the biophysical mechanisms of deep brain stimulation using voltage fluorescence microscopy
This project aims to elucidate the cellular mechanisms of deep brain stimulation in epilepsy using a novel optical technique to improve therapeutic protocols for human patients.