Antibiotic Lead Optimization

This project aims to optimize and evaluate a novel DnaN inhibitor, WAM-N17, to develop new antibiotics targeting multidrug-resistant bacteria through compound synthesis and in vivo studies.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

The bacterial sliding clamp (DnaN) is an innovative target for the development of novel antibiotics, which are urgently needed to overcome the alarming antimicrobial resistance crisis. In the previous ERC starting grant (NovAnI), we discovered a novel DnaN inhibitor (WAM-N17) with promising broad-spectrum antibacterial activity, including multidrug-resistant (MDR) pathogens.

Project Objectives

In this PoC project, we will optimize the antibacterial potency and spectrum and characterize the in vivo pharmacokinetic (PK) and pharmacodynamic (PD) properties of the WAM-N17 class to develop preclinical lead candidates for the treatment of bacterial infections, especially those caused by MDR germs. To achieve this goal, we will pursue three main activities:

  1. Design and Synthesis
    Design and synthesis of 2530 compounds (in two rounds) with modifications focusing on improving the anti-Gram-negative activity as well as target identification through chemical probes to further validate DnaN and identify other potential targets in bacteria.

  2. Evaluation of Compounds
    Evaluation of antibacterial activity, target binding/inhibition, and in vitro ADME-T (absorption, distribution, metabolism, excretion, toxicity) characterization for all new compounds. The frontrunners will be profiled for antibacterial activity against an extended panel of Gram-negative and MDR clinical isolates and subjected to mode of action (MoA) and target-identification studies. The most promising ten compounds will be submitted for in vivo PK studies, and the best two lead candidates will be tested in a proof-of-concept in vivo efficacy study using relevant infection mouse models.

  3. Intellectual Property and Future Studies
    Ultimately, we will file a patent to secure our intellectual property rights and continue to move this class of compounds forward into preclinical and then clinical studies in collaboration with a pharmaceutical industry partner.

Conclusion

The knowledge that will be gained from this PoC project is essential to develop an urgently needed new antibiotic with an unprecedented mode of action.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-6-2023
Einddatum30-11-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBHpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Determining the mechanisms of lipid-targeting antibiotics in intact bacteria

This project aims to elucidate the mechanisms of lipid-targeting antibiotics using advanced imaging and NMR techniques to combat antimicrobial resistance effectively.

€ 2.000.000
EIC Pathfinder

Targeted Nano-formulations for Treatment of MRSA: A multicomponent platform for nano-formulated treatment of resistant microbial infections

LeadToTreat aims to develop targeted nano-formulations for treating MRSA infections by co-delivering novel low-drugability compounds and synergistic antibiotic combinations.

€ 2.665.564
ERC ADG

Bacteriocins from interbacterial warfare as antibiotic alternative

BACtheWINNER aims to develop novel antimicrobials from bacteriocins through advanced bioengineering and molecular genetics to combat antimicrobial resistance and improve human and animal health.

€ 2.500.000
ERC ADG

Breaking resistance of pathogenic bacteria by chemical dysregulation

The project aims to combat antibiotic-resistant bacteria by developing innovative small molecules that dysregulate bacterial physiology through a three-tiered chemical strategy.

€ 2.499.785