AI Organoid Image Analysis
Developing a user-friendly SaaS toolbox utilizing AI for automated quantification of organoid images to enhance accuracy, standardization, and efficiency in organoid research.
Projectdetails
Introduction
Organoids are microscopically small patient-derived 3D organs that can be cultivated in the laboratory over months, mimicking human organs and their functions in vitro. These mini-organs have a human genetic background, maintain disease traits in vitro, and are currently available for almost every human organ.
Advantages of Organoids
Due to these advantages, organoid research and its commercial applications are rapidly evolving and increasingly used. Given the high variability of these complex 3D structures, classical cell culture-based image quantification tools do not accurately capture organoids in microscope images.
Challenges in Image Quantification
This has resulted in much image quantification at our laboratory—like in many others—being performed using manual, time-consuming tools with high researcher variability. In sum, there is a global challenge to quantify organoid experiments in a standardized manner.
Proposed Solution
We propose the first Software as a Service (SaaS) toolbox explicitly tailored to organoid imaging, building upon powerful AI-based algorithms for cutting-edge image quantification. This solution is independent of the underlying microscope and culture system hardware.
Features of the SaaS Toolbox
The SaaS seamlessly fits into the analysis workflow by offering a user-friendly approach to:
- Upload brightfield and immunofluorescence microscope images and videos of organoid cultures.
- Automatically quantify these images using AI models, generating a range of organoid metrics.
Benefits of Automation
Overall, the provided automation drastically reduces analysis time, promotes accurate phenotypical organoid analyses, and ensures standardization of results between different researchers, culture conditions, and imaging hardware.
Conclusion
Integrated into an easy-to-use web app, the SaaS tool is of great interest and essential for researchers working in the emerging field of organoids, as shown by the high utilization in our laboratory and the high interest from external partner institutions.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-6-2023 |
Einddatum | 30-11-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- LEIBNIZ-INSTITUT FUR VIROLOGIEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Live imaging module for organoidsThe LiveOrg project aims to develop and disseminate a non-invasive, high-resolution imaging system for organoids to enhance quality control and therapeutic evaluation across multiple medical fields. | ERC Proof of... | € 150.000 | 2024 | Details |
An automated platform for the large-scale production of miniaturized neuromuscular organoidsThe project aims to automate and scale the production of complex neuromuscular organoids for high-throughput drug screening to advance therapies for neuromuscular diseases. | ERC Proof of... | € 150.000 | 2023 | Details |
Method for Integrated All-Optical Biological Analysis at ScaleDeveloping an all-optical platform for precise optogenetic probing and automated data analysis to enhance research in neuroscience, developmental biology, and cancer. | ERC Proof of... | € 150.000 | 2024 | Details |
Sensor islet organoids (SILORGS) for in vivo identification of anti-diabetic drugsDevelop a non-invasive in vivo imaging platform using sensor islet organoids in mice to assess β-cell function and survival for validating new diabetes treatments. | ERC Proof of... | € 150.000 | 2024 | Details |
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug DiscoveryThe project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows. | ERC Proof of... | € 150.000 | 2025 | Details |
Live imaging module for organoids
The LiveOrg project aims to develop and disseminate a non-invasive, high-resolution imaging system for organoids to enhance quality control and therapeutic evaluation across multiple medical fields.
An automated platform for the large-scale production of miniaturized neuromuscular organoids
The project aims to automate and scale the production of complex neuromuscular organoids for high-throughput drug screening to advance therapies for neuromuscular diseases.
Method for Integrated All-Optical Biological Analysis at Scale
Developing an all-optical platform for precise optogenetic probing and automated data analysis to enhance research in neuroscience, developmental biology, and cancer.
Sensor islet organoids (SILORGS) for in vivo identification of anti-diabetic drugs
Develop a non-invasive in vivo imaging platform using sensor islet organoids in mice to assess β-cell function and survival for validating new diabetes treatments.
High Throughput Modelling and Measurement of Human Epithelial Models using Electrospun Conducting Polymers For Unlocking Data-Driven Drug Discovery
The project aims to enhance drug discovery by developing simplified Organ on Chip platforms through hydrogel electrospinning, enabling scalable monitoring and integration into industry workflows.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Cloudplatform for High Content ImagingCore Life Analytics ontwikkelt een cloudplatform voor onafhankelijke onderzoekers om snel en kosteneffectief HC data-analyse uit te voeren. | Mkb-innovati... | € 20.000 | 2023 | Details |
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentieDit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren. | Mkb-innovati... | € 200.000 | 2018 | Details |
Revolutionary high-resolution human 3D brain organoid platform integrating AI-based analyticsThe 3D-BrAIn project aims to develop a personalized bio-digital twin of the human brain using advanced organoid cultures and machine learning to enhance precision medicine for CNS disorders. | EIC Pathfinder | € 1.998.347 | 2023 | Details |
Organ on a chip platform for drug discoveryBI/OND ontwikkelt innovatieve hardwareoplossingen voor organen op een chip om gepersonaliseerde medicijnen te bevorderen en het gebruik van dieren in pre-klinisch onderzoek te verminderen. | Mkb-innovati... | € 20.000 | 2021 | Details |
Supervised morphogenesis in gastruloidsThis project aims to develop advanced gastruloid technology to create larger, vascularized organ models that better mimic human physiology, reducing reliance on animal experiments. | EIC Pathfinder | € 3.337.725 | 2022 | Details |
Cloudplatform for High Content Imaging
Core Life Analytics ontwikkelt een cloudplatform voor onafhankelijke onderzoekers om snel en kosteneffectief HC data-analyse uit te voeren.
AI-based medical assistant - Herkennen en classificeren van tumoren m.b.v. kunstmatige intelligentie
Dit project ontwikkelt een geavanceerde beeldherkenningstechnologie voor realtime screening van eiwittypologieën in biopten, om de behandeling van complexe tumoren te verbeteren.
Revolutionary high-resolution human 3D brain organoid platform integrating AI-based analytics
The 3D-BrAIn project aims to develop a personalized bio-digital twin of the human brain using advanced organoid cultures and machine learning to enhance precision medicine for CNS disorders.
Organ on a chip platform for drug discovery
BI/OND ontwikkelt innovatieve hardwareoplossingen voor organen op een chip om gepersonaliseerde medicijnen te bevorderen en het gebruik van dieren in pre-klinisch onderzoek te verminderen.
Supervised morphogenesis in gastruloids
This project aims to develop advanced gastruloid technology to create larger, vascularized organ models that better mimic human physiology, reducing reliance on animal experiments.