Advanced 3D in vitro models based on magnetically-driven docking of modular microscaffolds
This project aims to develop 3D modular co-culture systems using magnetic microscaffolds to replicate brain tumor microenvironments for drug screening and cancer therapy testing.
Projectdetails
Introduction
This project is focused on the design, the production, the characterization, and the proposal for future commercialization of 3D modular co-culture systems, specifically designed to recapitulate the physio-pathological microenvironment of brain tumors.
Key Technology
The key technology at the base of the proposed project is the design of magnetic microscaffolds and their fabrication through two-photon polymerization (2pp). This is a disruptive mesoscale manufacturing technique that enables low-cost obtainment of microstructures with nanometric resolution, characterized by unprecedented levels of accuracy and reproducibility.
Biohybrid Device
A microtubular structure scaffolding endothelial cells and connected to a fluidic system will be exploited to mimic the blood-brain barrier. This biohybrid device will be the base for the assembly of ferromagnetic microcages hosting glioblastoma cells and will be provided with docking systems for superparamagnetic microcages carrying undifferentiated and differentiated neuronal progenitor cells.
Innovation
This approach represents a disruptive innovation with respect to other 3D models available in the literature. It will allow a faithful recapitulation of the complex glioblastoma microenvironment through a platform that can be very easily handled in any laboratory.
Future Applications
High-throughput screenings of brain drugs and in vitro testing of the efficacy of different anticancer therapies are envisaged upon successful accomplishment of the project. This will lead to a pioneering generation of flexible multi-cellular platforms easily adaptable to the mimicry of different pathological conditions.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 30-6-2024 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
COmputational DEsign for 4D BIOfabrication: harnessing programmable materials for dynamic pre-clinical cancer modelsCoDe4Bio aims to revolutionize cancer research by developing programmable 4D biofabricated models to better understand dynamic physical cues and improve pre-clinical drug screening. | ERC STG | € 1.495.100 | 2023 | Details |
Mechanobiology of cancer progressionThis project aims to develop an innovative in vivo platform to study tumor fibrosis and improve targeted cancer therapies by mimicking the fibrotic microenvironment of breast cancer. | ERC ADG | € 2.498.690 | 2022 | Details |
5D Electro-Mechanical Bio-Interface for Neuronal Tissue EngineeringDevelop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications. | ERC STG | € 1.750.000 | 2024 | Details |
Humane mini-breinen voor R&D-toepassingenHet project ontwikkelt een applicatie voor het kweken en analyseren van humane mini-breinen, ter vermindering van dierproeven. | MIT R&D Samenwerking | € 744.000 | 2021 | Details |
COmputational DEsign for 4D BIOfabrication: harnessing programmable materials for dynamic pre-clinical cancer models
CoDe4Bio aims to revolutionize cancer research by developing programmable 4D biofabricated models to better understand dynamic physical cues and improve pre-clinical drug screening.
Mechanobiology of cancer progression
This project aims to develop an innovative in vivo platform to study tumor fibrosis and improve targeted cancer therapies by mimicking the fibrotic microenvironment of breast cancer.
5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering
Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.
Humane mini-breinen voor R&D-toepassingen
Het project ontwikkelt een applicatie voor het kweken en analyseren van humane mini-breinen, ter vermindering van dierproeven.