A novel immuno-oncolytic virus-based dendritic cell therapeutic cancer vaccine
DCanVAX aims to create a novel oncolytic virus-based dendritic cell vaccine to enhance immune responses against solid tumors by utilizing a complete tumor antigen library for personalized therapy.
Projectdetails
Introduction
Following decades of development, therapeutic cancer vaccines are beginning to gain momentum in demonstrating therapeutic effects, and they represent a particularly promising approach. The aim of therapeutic cancer vaccines is to stimulate immunity against tumor antigens, usually through the use of whole cells, peptides, or nucleic acids (i.e. mRNAs).
Dendritic Cell-Based Vaccines
Dendritic cell- (DC) based vaccines represent particularly interesting candidates for therapeutic cancer vaccine products due to their ability to cross-present antigens to T cells. This capability drives adaptive immune responses through the induction of antigen-specific cytotoxic T lymphocytes.
Limitations of Current Approaches
Despite the potential of DC-based cancer vaccines, several major limitations have hindered their success in clinical studies. These limitations include:
- Insufficient ex vivo maturation of DCs
- Challenges in selecting optimal tumor antigens to target
DCanVAX Project
The aim of DCanVAX is to develop a novel oncolytic virus-based dendritic cell vaccine approach for systemic therapy of solid cancers. We propose that the use of a highly immuno-oncolytic virus as a mechanism to lyse tumor cells ex vivo will lead to the release of the entire tumor antigen library, as well as a cocktail of danger signals in response to the virus infection.
Methodology
By applying this highly immunogenic lysate to autologous DCs, an optimized and personalized DC vaccine can be generated. This method overcomes the major challenges that have been encountered by DC vaccine approaches in the clinic by providing a potent mechanism of DC maturation and activation.
Expected Outcomes
Simultaneously, this approach exposes the DCs to the complete repertoire of tumor antigens that are specific to the patient, leading to potent and broad tumor-specific immune responses against the cancer. This approach can be developed for multiple solid cancer indications and combined with other immunotherapy approaches for potentially synergistic therapeutic effects.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-2-2024 |
Einddatum | 31-7-2025 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
C- and N-terminal Epitope Conjugate immune Cell Targeted VaccinesCNECT-VAX aims to validate a novel cancer vaccine platform using nanobodies for targeted dendritic cell activation to enhance immune responses and improve treatment efficacy. | ERC Proof of... | € 150.000 | 2022 | Details |
Modular Targeted Nanoplatform for Immune Cell Regulation and TherapyImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative. | ERC Proof of... | € 150.000 | 2023 | Details |
Conventional Dendritic Cells – Ecology, Diversity, and FunctionThe project aims to explore the diverse roles of conventional dendritic cell subsets in T cell activation during different immune responses to enhance cancer therapies and vaccine efficacy. | ERC Starting... | € 1.796.125 | 2024 | Details |
Neoantigen Identification with Dendritic Cell ReprogrammingThe NeoIDC project aims to revolutionize cancer immunotherapy by using cDC1 reprogramming to identify immunogenic neoantigens and TCRs for developing effective vaccines and adoptive T cell therapies. | ERC Proof of... | € 150.000 | 2023 | Details |
Improving Peptide-Based Anti-Cancer Vaccines with Phosphatase InhibitorsThis project aims to enhance the efficacy of peptide-based vaccines by improving intracellular processing for MHC presentation, while also preparing for commercialization and protecting intellectual property. | ERC Proof of... | € 150.000 | 2023 | Details |
C- and N-terminal Epitope Conjugate immune Cell Targeted Vaccines
CNECT-VAX aims to validate a novel cancer vaccine platform using nanobodies for targeted dendritic cell activation to enhance immune responses and improve treatment efficacy.
Modular Targeted Nanoplatform for Immune Cell Regulation and Therapy
ImmuNovation aims to develop a targeted nano-immunoModulator nanovaccine to enhance antitumor immunity against CEACAM5+ gastrointestinal cancers, offering a safer and more effective treatment alternative.
Conventional Dendritic Cells – Ecology, Diversity, and Function
The project aims to explore the diverse roles of conventional dendritic cell subsets in T cell activation during different immune responses to enhance cancer therapies and vaccine efficacy.
Neoantigen Identification with Dendritic Cell Reprogramming
The NeoIDC project aims to revolutionize cancer immunotherapy by using cDC1 reprogramming to identify immunogenic neoantigens and TCRs for developing effective vaccines and adoptive T cell therapies.
Improving Peptide-Based Anti-Cancer Vaccines with Phosphatase Inhibitors
This project aims to enhance the efficacy of peptide-based vaccines by improving intracellular processing for MHC presentation, while also preparing for commercialization and protecting intellectual property.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Functional chemical reprogramming of cancer cells to induce antitumor immunityThe RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments. | EIC Pathfinder | € 2.966.695 | 2024 | Details |
Development of a cell immunotherapy targeting non-conventional tumor antigens in ovarian cancerErVaccine aims to develop TCR-OV1, a novel TCR-T cell therapy targeting cancer-specific antigens to improve early detection and treatment outcomes for ovarian cancer patients. | EIC Accelerator | € 2.499.999 | 2024 | Details |
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell ReprogrammingThe Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization. | EIC Transition | € 2.480.367 | 2025 | Details |
Patiënt specifieke immunotherapie voor de behandeling van alvleesklierkankerDe ontwikkeling van een gepersonaliseerde immunotherapie voor alvleesklierkanker om de overlevingskansen van patiënten te verbeteren. | Mkb-innovati... | € 20.000 | 2020 | Details |
Functional chemical reprogramming of cancer cells to induce antitumor immunity
The RESYNC consortium aims to revolutionize cancer immunotherapy by reprogramming cancer cells into antigen-presenting dendritic cells using small molecules for personalized and safer treatments.
Development of a cell immunotherapy targeting non-conventional tumor antigens in ovarian cancer
ErVaccine aims to develop TCR-OV1, a novel TCR-T cell therapy targeting cancer-specific antigens to improve early detection and treatment outcomes for ovarian cancer patients.
Breakthrough Neoantigen-specific Tumor-Infiltrating Lymphocyte Therapies Through Novel Dendritic Cell Reprogramming
The Repro-TIL project aims to enhance tumor-reactive TIL expansion for more effective immunotherapy in solid tumors, paving the way for improved treatment outcomes and commercialization.
Patiënt specifieke immunotherapie voor de behandeling van alvleesklierkanker
De ontwikkeling van een gepersonaliseerde immunotherapie voor alvleesklierkanker om de overlevingskansen van patiënten te verbeteren.