Unlocking the complex genomes of European potatoes for modern breeding

BYTE2BITE aims to enhance potato breeding by creating a near-complete pan-genome and developing tools for efficient genotyping to produce low mutational load cultivars for global food security.

Subsidie
€ 1.998.826
2025

Projectdetails

Introduction

Potato is one of the three most important food crops in the world. Around 1.3 billion people rely on potato as a staple food every day. But despite this exceptional socio-economic importance, the improvement of potato during the past 150 years has been limited.

Challenges in Potato Breeding

The main reason for this deficit is the highly heterozygous, autotetraploid genome of potato. This complicates several important aspects of breeding, including the fixation of beneficial alleles and the implementation of modern, genomics-assisted breeding techniques.

Recently, it has been suggested to convert tetraploid potato into a diploid crop, thereby overcoming all the difficulties associated with tetraploid potato breeding. However, the creation of diploid potatoes is hampered by the large number of deleterious recessive mutations that have accumulated in the tetraploid genome and are exposed in the diploid potatoes.

Project Overview

In BYTE2BITE, we will address the fundamental issues that hold back the success of potato breeding. We will generate the first-of-its-kind, near-to-complete pan-genome of potato and use this resource to develop unprecedented genome-graph tools for efficient genotyping and haplotype-resolved genome analysis.

We will then use this new computational toolbox to establish a genomics-assisted pre-breeding programme in which we will generate novel potato cultivars with low mutational load. This new resource will open the doors to efficient breeding, unleashing the genetic potential of potato and thereby helping to secure the way we feed the world for the decades to come.

Goals of BYTE2BITE

Specifically, in BYTE2BITE we want to achieve the following goals:

  1. A near-to-complete pan-genome describing almost the entire haplotype diversity of potato.
  2. A genome graph tool for cost-efficient genotyping and haplotype-resolved genome analyses.
  3. A genomics-assisted pre-breeding programme for potatoes with low mutational load.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.998.826
Totale projectbegroting€ 1.998.826

Tijdlijn

Startdatum1-2-2025
Einddatum31-1-2030
Subsidiejaar2025

Partners & Locaties

Projectpartners

  • LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHENpenvoerder
  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

EIC Transition

3P-Tec - Three-parent breeding technology for plants of the future

The project aims to develop a revolutionary three-parent breeding technology (3P-Tec) to create climate-resilient crops, enhancing yields and accelerating the commercialization of improved seed varieties.

€ 2.498.828
ERC POC

Next-generation multi-targeted CRISPR genetic toolbox uncovers hidden breeding traits

Multi-Crop technology utilizes genome-scale multi-targeted CRISPR libraries to uncover hidden genetic traits in crops, revolutionizing plant breeding for enhanced resilience and productivity.

€ 150.000
ERC POC

In planta jet injection: Efficient genetic engineering of resilient crops

The project aims to develop affordable, high-throughput devices for efficient genome editing in crops to enhance yield and climate resilience, addressing global food security challenges by 2100.

€ 150.000
ERC POC

AdaptiveTarget: Accessing haplotype variation at complex loci with optimized targeting and adaptive sampling

Developing AdaptiveTarget, a bioinformatic method for efficient long-read sequencing of complex genomic regions, to enhance crop disease resistance and improve precision breeding.

€ 150.000