Tracking adaptation of naïve T cells to distinct organs to decode organ-specific immune diseases

This project investigates how organ-adapted naïve CD4+ T cells contribute to organ-specific immune-mediated inflammatory diseases triggered by environmental factors, aiming to enhance precision medicine approaches.

Subsidie
€ 1.999.000
2024

Projectdetails

Introduction

Organ-specific immune-mediated inflammatory diseases (IMIDs) have a growing socio-economic impact due to their steadily increasing incidence. At least two aspects are still unclear: what immunological mechanisms restrict these diseases to one or a set of specific organs and what triggers the continuously increasing incidence, particularly in industrialized countries.

Environmental Triggers

Increasing exposure to harmful environmental triggers, such as pollution and the Western diet, have been suggested as potential reasons. We propose that when locally active immune cells are perturbed by harmful environmental triggers, this leads to organ-specific IMIDs.

Role of Naïve CD4+ T Cells

Naïve CD4+ T cells have so far been considered a quasi-homogenous and inert population excluded from organs. Therefore, their contribution to organ-specific IMIDs has been overlooked. Contrary to this, there is evidence that naïve T cells circulate through organs and diversify into different subpopulations reflecting the organ they patrol.

Project Aims

This project aims to reveal whether organ adaptation of naïve T cells in steady state is one of the key mechanisms contributing to the organization of the immune system into districts of competence - i.e., areas of inflammation. We also aim to understand whether organ-specific naïve T cells responding to harmful environmental triggers set the early premise for the development of organ-specific IMIDs.

Methodology

We will study this using a unique portfolio of healthy and diseased human organs in combination with multi-modal single-cell technologies to gain an unprecedented resolution in the analysis of naïve T cells.

Next, we will use mouse models and 3D human co-cultures to test naïve T cell function and response to environmental triggers.

Impact

This project will influence the current understanding of how the activity of the immune system is adapted and distributed throughout the body, which will also push the boundary of precision medicine to consider organ-specific naïve T cells when designing future immunotherapies.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.000
Totale projectbegroting€ 1.999.000

Tijdlijn

Startdatum1-4-2024
Einddatum31-3-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORFpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Microbiota-T cell interactions - antigen-specificity and regulation in health and disease

This project aims to identify and characterize microbe-specific T cells to understand their role in chronic inflammatory diseases and aging, paving the way for targeted therapies.

€ 1.500.000
ERC STG

Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and Cancer

This project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets.

€ 2.025.000
ERC ADG

Innate lymphoid cells and tissue adaptation to changing metabolic needs

This project aims to elucidate the role of ILC3 and the IL-22:IL-22BP module in intestinal adaptation to metabolic changes, with implications for understanding and treating metabolic diseases.

€ 2.379.266
ERC STG

In vivo metabolic determinants of T cell aging trajectories

This project aims to uncover how aging microenvironments affect T cell immunity and explore methods to rejuvenate T cells to combat age-related diseases.

€ 1.500.000