Tracking adaptation of naïve T cells to distinct organs to decode organ-specific immune diseases
This project investigates how organ-adapted naïve CD4+ T cells contribute to organ-specific immune-mediated inflammatory diseases triggered by environmental factors, aiming to enhance precision medicine approaches.
Projectdetails
Introduction
Organ-specific immune-mediated inflammatory diseases (IMIDs) have a growing socio-economic impact due to their steadily increasing incidence. At least two aspects are still unclear: what immunological mechanisms restrict these diseases to one or a set of specific organs and what triggers the continuously increasing incidence, particularly in industrialized countries.
Environmental Triggers
Increasing exposure to harmful environmental triggers, such as pollution and the Western diet, have been suggested as potential reasons. We propose that when locally active immune cells are perturbed by harmful environmental triggers, this leads to organ-specific IMIDs.
Role of Naïve CD4+ T Cells
Naïve CD4+ T cells have so far been considered a quasi-homogenous and inert population excluded from organs. Therefore, their contribution to organ-specific IMIDs has been overlooked. Contrary to this, there is evidence that naïve T cells circulate through organs and diversify into different subpopulations reflecting the organ they patrol.
Project Aims
This project aims to reveal whether organ adaptation of naïve T cells in steady state is one of the key mechanisms contributing to the organization of the immune system into districts of competence - i.e., areas of inflammation. We also aim to understand whether organ-specific naïve T cells responding to harmful environmental triggers set the early premise for the development of organ-specific IMIDs.
Methodology
We will study this using a unique portfolio of healthy and diseased human organs in combination with multi-modal single-cell technologies to gain an unprecedented resolution in the analysis of naïve T cells.
Next, we will use mouse models and 3D human co-cultures to test naïve T cell function and response to environmental triggers.
Impact
This project will influence the current understanding of how the activity of the immune system is adapted and distributed throughout the body, which will also push the boundary of precision medicine to consider organ-specific naïve T cells when designing future immunotherapies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.000 |
Totale projectbegroting | € 1.999.000 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 31-3-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORFpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Microbiota-T cell interactions - antigen-specificity and regulation in health and diseaseThis project aims to identify and characterize microbe-specific T cells to understand their role in chronic inflammatory diseases and aging, paving the way for targeted therapies. | ERC STG | € 1.500.000 | 2022 | Details |
Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and CancerThis project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets. | ERC STG | € 2.025.000 | 2022 | Details |
Innate lymphoid cells and tissue adaptation to changing metabolic needsThis project aims to elucidate the role of ILC3 and the IL-22:IL-22BP module in intestinal adaptation to metabolic changes, with implications for understanding and treating metabolic diseases. | ERC ADG | € 2.379.266 | 2022 | Details |
In vivo metabolic determinants of T cell aging trajectoriesThis project aims to uncover how aging microenvironments affect T cell immunity and explore methods to rejuvenate T cells to combat age-related diseases. | ERC STG | € 1.500.000 | 2023 | Details |
Microbiota-T cell interactions - antigen-specificity and regulation in health and disease
This project aims to identify and characterize microbe-specific T cells to understand their role in chronic inflammatory diseases and aging, paving the way for targeted therapies.
Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and Cancer
This project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets.
Innate lymphoid cells and tissue adaptation to changing metabolic needs
This project aims to elucidate the role of ILC3 and the IL-22:IL-22BP module in intestinal adaptation to metabolic changes, with implications for understanding and treating metabolic diseases.
In vivo metabolic determinants of T cell aging trajectories
This project aims to uncover how aging microenvironments affect T cell immunity and explore methods to rejuvenate T cells to combat age-related diseases.