Straintronic control of correlations in twisted van der Waals heterostructures
This project aims to explore the ground state properties of twisted graphene and transition metal dichalcogenide heterostructures using hydrostatic pressure and mechanical strain to uncover novel quantum phases.
Projectdetails
Introduction
Correlations and topology are the cornerstones of modern condensed matter physics, and their coexistence is believed to lead to novel quantum electronic devices with built-in information protection.
Background
In the landmark discoveries of previous years, it has been found that in 2D materials placed on top of each other at a magic rotation angle, correlated phases appear. In contrast to high-Tc materials, in twisted van der Waals materials, correlation effects are coupled with topology. Thanks to their gate tunability, the exploration of their phase diagram takes only days instead of years.
This has led to the discovery of a multitude of correlated phases including:
- Correlated insulators
- Orbital magnetic phases
- Non-conventional superconducting phases
- Ferroelectric phases
Despite the immense interest, the understanding of their behavior at the microscopic level is limited, which calls for further experiments and novel experimental tools.
Project Objectives
In this project, we will implement techniques that are radically new in this field: hydrostatic pressure and mechanical strain to uncover the ground state properties of twisted graphene and transition metal dichalcogenide heterostructures.
Importance of Interlayer Coupling
Since the interlayer coupling plays the dominant role, changing the distance of the layers with hydrostatic pressure has a dramatic effect on the band structure and the correlated phases that emerge. The symmetries of the system can be deterministically broken by strain patterns applied in-situ.
Expected Outcomes
This very timely project will lead to several breakthroughs including:
a) Revealing the ground state of twisted bilayer graphene at different filling factors from the large set of competing phases.
b) In-situ engineering of the topology of these systems.
c) Tuning quantum phase transitions between non-Fermi liquid phases.
The highly challenging research concept relies on my unique background in sample fabrication, quantum transport under strain and pressure, and studies on correlated and topological systems.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.939.000 |
Totale projectbegroting | € 1.939.000 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Understanding, Engineering, and Probing Correlated Many-Body Physics in Superlattices of Graphene and BeyondSuperCorr aims to engineer and probe novel correlated many-body physics in solid-state systems, particularly through graphene moire structures and tailored atom arrangements, enhancing quantum technology applications. | ERC STG | € 1.346.126 | 2022 | Details |
Tailoring Quantum Matter on the FlatlandThis project aims to experimentally realize and manipulate 2D topological superconductors in van der Waals heterostructures using advanced nanofabrication and probing techniques. | ERC STG | € 1.976.126 | 2022 | Details |
Distorting unconventional superconductivity - A grasp of electronic phases with multiple broken symmetriesThis project aims to develop a novel "distortiometry" method to explore the relationship between nematicity and superconductivity in materials, enhancing understanding of unconventional superconductivity. | ERC STG | € 1.499.536 | 2023 | Details |
Correlation-driven metallic topologyThe project aims to discover new correlation-driven gapless topological phases in heavy fermion compounds, establishing design principles and assessing their potential for quantum devices. | ERC ADG | € 3.356.483 | 2022 | Details |
Understanding, Engineering, and Probing Correlated Many-Body Physics in Superlattices of Graphene and Beyond
SuperCorr aims to engineer and probe novel correlated many-body physics in solid-state systems, particularly through graphene moire structures and tailored atom arrangements, enhancing quantum technology applications.
Tailoring Quantum Matter on the Flatland
This project aims to experimentally realize and manipulate 2D topological superconductors in van der Waals heterostructures using advanced nanofabrication and probing techniques.
Distorting unconventional superconductivity - A grasp of electronic phases with multiple broken symmetries
This project aims to develop a novel "distortiometry" method to explore the relationship between nematicity and superconductivity in materials, enhancing understanding of unconventional superconductivity.
Correlation-driven metallic topology
The project aims to discover new correlation-driven gapless topological phases in heavy fermion compounds, establishing design principles and assessing their potential for quantum devices.