SParse AND paRsimonious Event-based fLow Sensing
This project aims to develop a framework for estimating turbulent flows using manifold learning and event-based sensors, reducing data needs and enabling efficient flow control.
Projectdetails
Introduction
The closed-loop control of unsteady turbulent flows requires efficient strategies to sense the flow state. Despite the challenge posed by the non-linearities and the large range of scales of turbulent flows, their ubiquitous nature motivates unabated research efforts.
Development of Flow Estimation Tools
Over the last years, we have developed linear and non-linear flow estimation tools, with relevant laboratory applications. Nevertheless, the state of the art requires an intractable number of sensors, making the data acquisition and analysis unfeasible in a practical scenario.
Challenges in Current Paradigms
Moreover, the current paradigm of flow control requires continuous sensing and action in time, leading to very large data rates. Strangely, this seems at odds with what nature does.
Nature's Approach to Flow Estimation
Insects estimate the flow surrounding them with a few event-based sensors embedded in their wings. Algorithms for event-based signal processing avoid aliasing without the need for high-frequency periodic sampling, reducing the amount of data needed to estimate complex temporal series. This could enable flow estimation with easy-to-handle and cheap-to-compute data.
Recent Findings
Furthermore, our recent findings show that many complex flows can be represented on low-dimensional manifolds. The availability of a reduced set of coordinates for state representation is a key enabler for the choice of a sparse set of sensors in space.
Project Goals
This project will develop a novel framework for the estimation of turbulent and unsteady flows coupling manifold learning and event-based sensors. Tackling selected relevant laboratory problems, with and without control, we will:
- Reduce problem dimensionality and represent turbulent unsteady flows on low-dimensional manifolds.
- Identify parsimonious methods for sensor choice and location in complex flows.
- Define a theoretical framework for turbulent-flow measurements from event sensors.
Such a framework will be a key enabler for flow control and will open a novel research path in fluid mechanics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-10-2025 |
Einddatum | 30-9-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSIDAD CARLOS III DE MADRIDpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Non-Stationary Non-Homogeneous TurbulenceThis project aims to revolutionize turbulent flow prediction through innovative laboratory, computational, and theoretical methods, leading to a new understanding of non-stationary and non-homogeneous turbulence. | ERC ADG | € 2.499.514 | 2022 | Details |
Noise in FluidsThis project aims to develop a Stochastic Fluid Mechanics theory to explore the randomness in fluids, focusing on noise origins and effects, particularly in turbulence and boundary behavior. | ERC ADG | € 1.785.875 | 2023 | Details |
Generative Understanding of Ultrafast Fluid DynamicsThe project aims to harness ultra-fast fluid dynamics through advanced computational methods to optimize micro-manufacturing and energy conversion, delivering innovative solutions and insights. | ERC ADG | € 2.481.873 | 2023 | Details |
Unravelling unsteady fluid flows in porous media with 3D X-ray micro-velocimetryFLOWSCOPY aims to revolutionize the understanding of fluid flows in opaque porous materials by developing a fast 3D X-ray imaging method to measure complex flow dynamics at micro and macro scales. | ERC STG | € 1.500.000 | 2023 | Details |
Non-Stationary Non-Homogeneous Turbulence
This project aims to revolutionize turbulent flow prediction through innovative laboratory, computational, and theoretical methods, leading to a new understanding of non-stationary and non-homogeneous turbulence.
Noise in Fluids
This project aims to develop a Stochastic Fluid Mechanics theory to explore the randomness in fluids, focusing on noise origins and effects, particularly in turbulence and boundary behavior.
Generative Understanding of Ultrafast Fluid Dynamics
The project aims to harness ultra-fast fluid dynamics through advanced computational methods to optimize micro-manufacturing and energy conversion, delivering innovative solutions and insights.
Unravelling unsteady fluid flows in porous media with 3D X-ray micro-velocimetry
FLOWSCOPY aims to revolutionize the understanding of fluid flows in opaque porous materials by developing a fast 3D X-ray imaging method to measure complex flow dynamics at micro and macro scales.