Site-selective C(sp3)–H functionalization with gaseous reagents using Hydrogen Atom Transfer photocatalysis in flow
This project aims to develop a novel continuous-flow photocatalytic method for selective C–H bond functionalization using cheap reagents, enhancing late-stage diversification of bioactive molecules.
Projectdetails
Introduction
An essential part of synthetic organic chemistry is the conversion of raw materials into highly complex molecules. While traditionally this has been achieved through the conversion of functional groups, Nature has developed strategies to deliberately functionalize C–H bonds in organic molecules.
Nature-Inspired Strategies
Mimicking Nature’s machinery, chemists have developed a diverse set of powerful C–H bond functionalization strategies. However, undirected and selective C–H bond functionalization is still very challenging and it remains “a dream reaction” for the community.
Proposed Approach
Herein, I propose a novel approach that combines both chemical and technological tools and is based on a continuous-flow photocatalytic Hydrogen Atom Transfer (HAT) that uses cheap decatungstate to activate these C(sp3)–H bonds selectively.
Reaction Classes
Four different reaction classes will be developed which forge:
- C=O bonds using O2
- C–NO bonds using NO
- C–SO2X bonds using SO2
- C–CO2H bonds using CO2
These reagents are cheap and atom-efficient. All these methods provide useful functional handles which can be seamlessly engaged in other transformations.
Late-Stage Diversification
I will show that our methodology can be used to enable the late-stage diversification of bioactive molecules, establishing a new way of retrosynthetic thinking.
Exploiting HAT
Furthermore, I propose to exploit the intrinsic ability of HAT to abstract a hydrogen from volatile alkanes, such as methane, to generate the corresponding carbon-centered radicals. These nucleophilic radicals will be engaged in various cross-coupling transformations, including enantioselective variants.
Technological Impact
Moreover, I envision that a combination of continuous-flow, automation technology, and machine learning will provide a much-needed technological impact, enabling the development of unique screening tools for the reproducible functionalization of organic molecules.
Conclusion
The synthetic methods and technological tools will provide a breakthrough in the selective functionalization of strong C(sp3)–H bonds in both gaseous alkanes and biologically active molecules.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT VAN AMSTERDAMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multifunctional Ligands for Enhanced CatalysisThis project aims to develop a sustainable method for selective C-H functionalization using earth-abundant metals and multifunctional ligands, enhancing efficiency and expanding industrial applications. | ERC STG | € 1.583.643 | 2022 | Details |
Early-Stage OrganocatalysisThe project aims to develop next-generation organocatalysts for selective early-stage functionalization of hydrocarbons, enhancing efficiency in producing high-value chemicals. | ERC ADG | € 2.500.000 | 2022 | Details |
Energy Transfer Catalysis: A Highway to Molecular ComplexityHighEnT aims to innovate synthetic methodologies using visible light-mediated EnT catalysis to create complex organic molecules for pharmacological applications, enhancing chemical space and reaction design. | ERC ADG | € 2.499.250 | 2023 | Details |
Radical Chemistry with the Hydrogen Atom Through Water ActivationThis project aims to develop a novel photocatalytic method for water activation to transfer hydrogen into valuable compounds using metal-free phosphine-mediated radical processes. | ERC ADG | € 2.500.000 | 2024 | Details |
Multifunctional Ligands for Enhanced Catalysis
This project aims to develop a sustainable method for selective C-H functionalization using earth-abundant metals and multifunctional ligands, enhancing efficiency and expanding industrial applications.
Early-Stage Organocatalysis
The project aims to develop next-generation organocatalysts for selective early-stage functionalization of hydrocarbons, enhancing efficiency in producing high-value chemicals.
Energy Transfer Catalysis: A Highway to Molecular Complexity
HighEnT aims to innovate synthetic methodologies using visible light-mediated EnT catalysis to create complex organic molecules for pharmacological applications, enhancing chemical space and reaction design.
Radical Chemistry with the Hydrogen Atom Through Water Activation
This project aims to develop a novel photocatalytic method for water activation to transfer hydrogen into valuable compounds using metal-free phosphine-mediated radical processes.