Silicate alteration in marine sediments: kinetics, pathway, and dependency

This project aims to quantify marine silicate alteration rates through innovative lab experiments and field observations to enhance understanding of its role in carbon cycling and Earth's climate response.

Subsidie
€ 1.999.780
2023

Projectdetails

Introduction

Over its long geological history, the overall habitability of Earth has been governed by the chemical alteration of silicate minerals, a reaction that buffers pCO2 and climate. While terrestrial silicate weathering is widely appreciated, marine silicate weathering and reverse weathering (or marine silicate alteration, MSiA, altogether) has long been considered insignificant in the big picture.

Recent Paradigm Shift

This paradigm is challenged by recent work that suggests reverse weathering, as an oceanic Si sink, could be three times higher than previously thought. The latest estimates of marine silicate weathering show its CO2-fixing capacity could be 82% of that of its terrestrial counterpart.

Uncertainties and Gaps

Though potentially significant, these estimates are associated with large uncertainties and untested assumptions. In particular, information about the exact chemical pathway of MSiA, kinetics, and the environmental dependency is missing.

Research Objectives

To fill these gaps, I will provide the first comprehensive assessment of MSiA by quantifying its rates through both laboratory experiments and field observations.

Laboratory Experiments

While the former constrains how MSiA initiates, the latter represents the million-year quasi-steady state condition in nature. Reproducing the conditions for MSiA in the laboratory is undeniably challenging due to the required multi-year incubation under up to 340 times atmospheric pressure and near-frozen conditions, which I can reproduce with a novel apparatus.

Field Observations

Circulation of modified seawater with realistically slow flow will be maintained to derive MSiA rates through continuous fluid composition monitoring. Together with the rates estimated from field observations, I will evaluate the dependency of MSiA on environmental factors, such as the type/quality of silicates and organic matter.

Project Impact

The project will be transformative in our understanding of the coupling between Si and C cycles, and thus provide fundamental knowledge for predicting Earth responses to a likely hotter and wetter future.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.780
Totale projectbegroting€ 1.999.780

Tijdlijn

Startdatum1-7-2023
Einddatum30-6-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • STOCKHOLMS UNIVERSITETpenvoerder

Land(en)

Sweden

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Mechanisms of gas-driven mineral weathering in a changing climate

DryCO2 aims to understand gas-driven mineral weathering in the unsaturated zone to assess its role in climate evolution and optimize CO2 removal strategies amid changing climate conditions.

€ 1.499.176
ERC STG

Provenance And tranSport PathwayS of mArine proxy-bearinG particlEs

This project aims to enhance the accuracy of paleoceanographic studies by assessing hydrodynamic impacts on marine sediments and correcting climate signal biases using advanced radiocarbon techniques.

€ 1.499.766
ERC STG

Using lake sediments to reconstruct soil weathering trajectories over the Holocene

LAKE-SWITCH aims to develop quantitative weathering records over 100-10,000 years using isotopic proxies in Alpine lake sediments to understand human-climate impacts on the Earth's Critical Zone.

€ 1.494.788
ERC ADG

Quantifying and controlling the mechanisms responsible for mineral behaviour: Dissolution, adsorption and crystal growth

The project aims to develop new instruments to understand and control organic molecule interactions with silicate minerals, enhancing CO2 mineralization and addressing climate change challenges.

€ 3.499.625