Quantitative multimodal pulse-and-label time-resolved chromatin maps
This project aims to develop time-resolved assays to study dynamic chromatin states and histone inheritance during cell cycles, enhancing understanding of epigenetic information propagation.
Projectdetails
Introduction
Chromatin packages the eukaryotic genome in a highly dynamic fashion, with dramatic structural changes during every cell cycle. At the same time, chromatin provides remarkable stability for transcriptional regulation and genome organization, for example in maintaining gene expression programs and lineage identity during complex organismal development. A mechanism to propagate information through ‘disruptive’ transitions in the cell cycle, namely DNA replication and mitosis, is key in maintaining heritable, so-called ‘epigenetic’ chromatin states.
Motivation
Proteins that build and interact with chromatin, foremost histones, are much more than static architectural components. This motivates the development of time-resolved quantitative assays in the living cell, which will allow capturing dynamic features of chromatin states over timescales from minutes to days.
Methodology
Building on a synthetic biology toolbox, a quantitative multimodal pulse-and-label strategy will be developed. Following protein populations in both time and subcellular/genomic space, dynamic protein-protein interaction networks and chromatin maps will be captured.
Techniques
The project will use state-of-the-art quantitative biochemical, imaging, genomics, and proteomics readouts, including single-cell readouts. These will feed into mathematical models to:
- Describe the dynamics and potential heterogeneity/stochasticity of the system under study.
- Predict its response to perturbations.
- Guide mechanistic hypotheses.
Objectives
The project will systematically decipher mechanisms for propagating epigenetic chromatin states, starting with the fundamental rules of histone inheritance through replication and mitosis.
Complexity Integration
Additional levels of complexity introduced through chromatin remodeling activities, nucleosome turnover, and histone exchange will be integrated.
Developmental Dynamics
Finally, the dynamics underlying developmental chromatin state transitions, including asymmetric cell fate decisions, will be resolved.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- KAROLINSKA INSTITUTETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Shedding light on three-dimensional gene regulationThis project aims to elucidate gene expression regulation during differentiation using an ultra-fast optogenetic system and high-resolution genomic tools to study 3D chromatin interactions. | ERC STG | € 1.500.000 | 2024 | Details |
Transcription in 4D: the dynamic interplay between chromatin architecture and gene expression in developing pseudo-embryosThis project aims to integrate multi-scale dynamics of gene regulation during mammalian embryogenesis using advanced imaging and modeling techniques to enhance understanding of chromatin organization and transcriptional activity. | ERC SyG | € 9.546.410 | 2024 | Details |
Circadian structural transitions of chromatinThis project aims to investigate how transcription factors and chromatin interactions regulate gene expression in circadian systems using biochemical methods and functional genomics across diverse model organisms. | ERC STG | € 1.624.563 | 2025 | Details |
Development of novel single cell multi-omics methods to uncover regulators of cell type specific epigenetic states.scEpiTarget aims to develop novel single-cell methods to identify factors regulating cell-type specific histone modifications, enhancing understanding of epigenetic control in cell differentiation and potential therapies. | ERC STG | € 1.810.745 | 2025 | Details |
Shedding light on three-dimensional gene regulation
This project aims to elucidate gene expression regulation during differentiation using an ultra-fast optogenetic system and high-resolution genomic tools to study 3D chromatin interactions.
Transcription in 4D: the dynamic interplay between chromatin architecture and gene expression in developing pseudo-embryos
This project aims to integrate multi-scale dynamics of gene regulation during mammalian embryogenesis using advanced imaging and modeling techniques to enhance understanding of chromatin organization and transcriptional activity.
Circadian structural transitions of chromatin
This project aims to investigate how transcription factors and chromatin interactions regulate gene expression in circadian systems using biochemical methods and functional genomics across diverse model organisms.
Development of novel single cell multi-omics methods to uncover regulators of cell type specific epigenetic states.
scEpiTarget aims to develop novel single-cell methods to identify factors regulating cell-type specific histone modifications, enhancing understanding of epigenetic control in cell differentiation and potential therapies.