Porous poly(ionic liquid)s for CO2 capture and simultaneous conversion under ambient conditions

Develop metal-free dual-function porous poly(ionic liquid)s to efficiently capture and convert CO2 into cyclic carbonates, advancing cost-effective carbon capture and utilization technologies.

Subsidie
€ 1.999.444
2022

Projectdetails

Introduction

CO2 capture, storage, and utilization is judged critical to mitigate the rapid rise in the atmospheric CO2 concentration. A key problem is the gigantic mass of CO2 emitted, which asks for robust, efficient, and economically viable approaches that are currently missing and limited by the lack of suitable materials.

Project Aim

To break through this barrier, I aim to develop metal-free dual-function porous poly(ionic liquid)s (DPPs) to capture and convert CO2 under ambient conditions into cyclic carbonates with high efficiency, and to apply them in model reactors for cost-effective processing of CO2.

Background on Poly(ionic liquids)

Poly(ionic liquid)s (PILs) are innovative ionic materials, in which ionic liquids (ILs) are covalently joined by a macromolecular backbone. ILs are known CO2-philes, and IL-derived PILs are naturally in favor of CO2 sorption, while their ions can be tailor-made for catalytic CO2 transformation.

Dual-Functionality of PILs

Such dual-function as sorbent and catalyst is the intrinsic merit of PILs to address the CO2 challenge, but unfortunately has been long impeded by the mismatched chemical structures in each function. Our preliminary work proved that the newly emerging 1,2,4-triazolium PILs were catalytically active and drastically more CO2-philic than common polyimidazoliums, and are believed to be the game-changing materials.

Vision for Development

We envision that by structuring chemically tailor-made 1,2,4-triazolium PILs into highly porous materials, they will be able to capture and convert CO2 under ambient conditions. This ground-breaking materials concept will circumvent the complicated, harsh conditions for CO2 fixation and cut the cost to an affordably low level.

Expected Outcomes

This project will radically advance scientific knowledge and technology to fixate and convert CO2 at scale into value-added chemicals that further reduce the consumption of fossil resources. Its outcome will expedite the research in PIL and dual-function materials to revolutionize the CCU routes and equip us with powerful materials tools to mitigate the global CO2 rise.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.444
Totale projectbegroting€ 1.999.444

Tijdlijn

Startdatum1-12-2022
Einddatum30-11-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • STOCKHOLMS UNIVERSITETpenvoerder

Land(en)

Sweden

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Nano-Engineered Co-Ionic Ceramic Reactors for CO2/H2O Electro-conversion to Light Olefins

ECOLEFINS aims to revolutionize the commodity chemical industry by developing an all-electric process to convert CO2 and H2O into carbon-negative light olefins using renewable energy.

€ 2.519.031
ERC POC

Titanium-organic framework membranes for CO2 capture

PORECAPTURE aims to commercialize the MUV-10 titanium-organic framework for energy-efficient CO2 capture by optimizing production, developing membranes, and establishing a business model.

€ 150.000
EIC Pathfinder

Double-Active Membranes for a sustainable CO2 cycle

DAM4CO2 aims to develop innovative double active membranes for efficient CO2 capture and conversion into renewable C4+ fuels, promoting a sustainable net-zero carbon cycle.

€ 2.975.275
MIT Haalbaarheid

Gas-oppervlakte interactiesimulatie in industriële optica, waterstof en adsorptie van giftige gassen

Dit project onderzoekt de technische en economische haalbaarheid van gasafvang met poreuze materialen voor CO2 en andere gassen via simulaties en modellering, gericht op industriële toepassingen.

€ 20.000