Phage infection of bacterial biofilm
This project aims to characterize the dynamics of Herelleviridae phage phi812 in Staphylococcus aureus biofilms to enhance phage therapy effectiveness against antibiotic-resistant infections.
Projectdetails
Introduction
In 2017, the World Health Organization declared Staphylococcus aureus to be an antibiotic-resistant pathogen for which new therapeutics are urgently needed. Upon infection, S. aureus forms biofilms that can only be treated by the long-term application of several antibiotics in high doses or the surgical removal of the infected tissues.
Alternative Approaches
An alternative approach, phage therapy, has not been approved for clinical use because the effects of phage infection on a biofilm are not sufficiently characterized.
Proposed Study
We propose to study the dynamics of the propagation of Herelleviridae phage phi812 in a S. aureus biofilm and the molecular details of phi812 replication in a cell.
Methodology
We integrated a microfluidic system into a light-sheet microscope to enable continuous multi-day observation of the phage infection of a biofilm. We will determine how sub-populations of metabolically dormant or phage-resistant cells in a biofilm provide herd immunity against phi812 infection.
Imaging Techniques
Our system enables the fixation of biofilm segments for subsequent correlative imaging by serial block-face scanning electron microscopy to identify the interactions of phages with bacterial cells.
High-Resolution Analysis
We will use focused ion beam milling together with cryo-electron microscopy and tomography to determine high-resolution structures of previously uncharacterized phi812 replication and assembly intermediates in S. aureus cells.
Functional Studies
We will study the function of bacterial membranes and macromolecular complexes in the initiation and completion of:
- Phage genome delivery
- The assembly of phage portal complexes and heads
- The mechanisms of genome packaging and head-tail attachment
Biological Significance
This proposal's biological significance lies in its focus on the as-yet uncharacterized interactions of phages and bacteria under biologically and clinically relevant conditions.
Potential Impact
Our analyses of phage spread in a biofilm, herd immunity against phage infection, and phage replication in cells may identify approaches for making phage therapy more effective.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.992.976 |
Totale projectbegroting | € 1.992.976 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- Masarykova univerzitapenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Exploring the Prokaryotic-Eukaryotic Conservation of Antiviral immunity: from bacterial immune systems to novel antiviral drugsThis project aims to map bacterial antiviral immunity and discover novel anti-phage compounds, potentially transforming our understanding of prokaryotic immune systems and leading to new antiviral therapies. | ERC STG | € 1.496.500 | 2022 | Details |
Modification of liposomic nano-carriers: a novel strategy for improved drug-delivery and eradication of bacterial biofilmsThis project aims to develop and evaluate a novel drug delivery system to effectively treat and eradicate bacterial biofilms, addressing significant health and economic challenges. | ERC POC | € 150.000 | 2022 | Details |
Deciphering stringent response proteins and toxin-antitoxin systems in the arms race between bacteria and phagesThis project aims to identify phage proteins that target bacterial defense systems to advance phage therapy and improve bioremediation by studying Pseudomonas putida interactions. | ERC STG | € 1.499.250 | 2024 | Details |
Phage co-infection: a missing link in deciphering phage co-evolutionary dynamicsMULTIPHAGE aims to revolutionize our understanding of phage genome evolution by investigating co-infection dynamics through innovative omics methods and structural phylogeny. | ERC STG | € 1.499.401 | 2024 | Details |
Exploring the Prokaryotic-Eukaryotic Conservation of Antiviral immunity: from bacterial immune systems to novel antiviral drugs
This project aims to map bacterial antiviral immunity and discover novel anti-phage compounds, potentially transforming our understanding of prokaryotic immune systems and leading to new antiviral therapies.
Modification of liposomic nano-carriers: a novel strategy for improved drug-delivery and eradication of bacterial biofilms
This project aims to develop and evaluate a novel drug delivery system to effectively treat and eradicate bacterial biofilms, addressing significant health and economic challenges.
Deciphering stringent response proteins and toxin-antitoxin systems in the arms race between bacteria and phages
This project aims to identify phage proteins that target bacterial defense systems to advance phage therapy and improve bioremediation by studying Pseudomonas putida interactions.
Phage co-infection: a missing link in deciphering phage co-evolutionary dynamics
MULTIPHAGE aims to revolutionize our understanding of phage genome evolution by investigating co-infection dynamics through innovative omics methods and structural phylogeny.