Opening new frontiers in multi-scale evolution of collider events: a dual pathway to precision
The JANUS project aims to enhance theoretical methods for accurately modeling multi-scale particle interactions at colliders, improving predictions for Higgs and jet physics.
Projectdetails
Introduction
For the decades to come, the pioneering investigation of the fundamental laws of nature at the Large Hadron Collider (LHC) and at future collider experiments will rely on the interpretation of complex scattering events by means of accurate theoretical calculations. These calculations are instrumental to find small signals of elusive new phenomena.
Evolution of the System
These calculations must describe the evolution of the system from the few particles produced in the high-energy scattering to the tens or hundreds of low-energy particles observed in the detectors. This proposal aims at transforming the core of our theoretical understanding of such a multi-scale evolution, which nowadays is often too inaccurate to cope with the striking experimental precision.
Goals of JANUS
The goal of JANUS is to develop innovative ideas and theoretical methods to advance significantly both approaches to the problem: Resummations and Parton-Shower-Monte-Carlo (PSMC) generators. JANUS will establish a deep connection between the two fields, resulting in novel technology for the accurate modelling of multi-scale effects. Its main objectives are:
- To formulate new theoretical methods to tackle the resummation of complex collider observables in reactions with more than two emitters and scales with state-of-the-art accuracy.
- To lay the theoretical foundations for a new generation of PSMC algorithms, capable of describing accurately the hard scattering and subsequent parton-shower evolution for reactions with different jet multiplicities with a new standard of precision.
Application of Technology
This technology will be applied to obtain state-of-the-art theoretical predictions for a broad range of critical observables in the important fields of Higgs and jet physics, enabling their optimal exploration at the LHC and future collider experiments.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.993.125 |
Totale projectbegroting | € 1.993.125 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIREpenvoerder
- UNIVERSITAET BERN
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
AcceLerated PreCision Tests of Lepton UniversAlityThe ALPaCA project aims to enhance real-time analysis systems for the LHCb experiment to improve measurements of lepton flavor universality and identify new physics through advanced computing. | ERC STG | € 1.384.543 | 2022 | Details |
High-precision multi-leg Higgs and top physics with finite fieldsFFHiggsTop aims to revolutionize high-precision predictions for multi-particle interactions in high-energy physics by developing advanced methods for calculating scattering amplitudes. | ERC STG | € 1.104.218 | 2022 | Details |
Multi-Scale Amplitudes For Collider PhysicsMultiScaleAmp aims to advance multi-scale two-loop amplitude calculations using innovative techniques, enhancing precision in fundamental physics measurements from the Large Hadron Collider. | ERC STG | € 1.492.250 | 2023 | Details |
An Effective Field Theory for Non-Global Observables at Hadron CollidersEFT4jets aims to enhance LHC discovery potential by developing a rigorous theory for jet processes, addressing theoretical uncertainties, and improving predictions for key particle interactions. | ERC ADG | € 2.475.000 | 2023 | Details |
AcceLerated PreCision Tests of Lepton UniversAlity
The ALPaCA project aims to enhance real-time analysis systems for the LHCb experiment to improve measurements of lepton flavor universality and identify new physics through advanced computing.
High-precision multi-leg Higgs and top physics with finite fields
FFHiggsTop aims to revolutionize high-precision predictions for multi-particle interactions in high-energy physics by developing advanced methods for calculating scattering amplitudes.
Multi-Scale Amplitudes For Collider Physics
MultiScaleAmp aims to advance multi-scale two-loop amplitude calculations using innovative techniques, enhancing precision in fundamental physics measurements from the Large Hadron Collider.
An Effective Field Theory for Non-Global Observables at Hadron Colliders
EFT4jets aims to enhance LHC discovery potential by developing a rigorous theory for jet processes, addressing theoretical uncertainties, and improving predictions for key particle interactions.