Non-invasive Conduction Velocity Mapping in Brain Networks: A novel imaging framework for axonal fingerprinting of brain connections in health and disease
The CoM-BraiN project aims to non-invasively map axon diameters and conduction velocities in the brain using advanced MRI techniques to identify structural-function relationships in neurodegenerative disorders.
Projectdetails
Introduction
Axonal bundles in cerebral white matter form the structural basis of functional brain networks, enabling effective integration of neural activity. The axonal connections are not homogenous structures. Axons differ in diameter and myelination, enabling signal conduction at different velocities.
Axonal Diversity
This axonal diversity is a clinically relevant microstructural feature, as neurodegenerative or neuroinflammatory processes can affect axon diameters differently.
Advances in Imaging
Recent advances in Magnetic Resonance Imaging (MRI) have enabled the non-invasive mapping of the microstructural properties of brain network connections in live brains. However, attempts to correlate these structural features with brain function have not yet been successful.
Pioneering Research
I have pioneered the mapping of axon diameters that are directly linked to the conductive properties of axonal connections by using diffusion MRI in living human brains. Additionally, I have established a unique cross-disciplinary validation setup for such methods by combining nanoscopic 3D Synchrotron Radiation Imaging and functional cell-specific targeting techniques.
CoM-BraiN Framework
By Conduction Velocity Mapping in Brain Networks (CoM-BraiN), I will be able to unravel the altered functional dynamics of the microstructural connections in the diseased brain. Methodologically, I will push the frontiers of MRI by creating a new translational CoM-BraiN framework for non-invasive and in-vivo studies in animals and humans.
Clinical Implications
Clinically, CoM-BraiN will provide a new window into the characterization of neuropathological changes in the diseased brain. It will also contribute to the identification of structure-function fingerprints of psychiatric and neurodegenerative disorders that are thought to be a major pathogenic factor in many brain diseases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.994 |
Totale projectbegroting | € 1.999.994 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 31-10-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- REGION HOVEDSTADENpenvoerder
- DANMARKS TEKNISKE UNIVERSITET
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Connectome cost conservation model of skill learningThis project aims to model brain connectomes before and after skill learning to predict neuroplasticity and behavioral outcomes, bridging neuropsychology and neurobiology. | ERC ADG | € 2.484.375 | 2022 | Details |
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseasesThe project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation. | EIC Pathfinder | € 3.946.172 | 2022 | Details |
MRI-based ID of the Vasculature across the Heart-Brain AxisDeveloping VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases. | ERC STG | € 1.852.430 | 2023 | Details |
Revealing the wiring rules of neural circuit assembly with spatiotemporally resolved molecular connectomicsThis project aims to develop a novel method for large-scale neural circuit tracing and RNA sequencing to understand genomic influences on brain connectivity and its implications for autism. | ERC STG | € 1.500.000 | 2024 | Details |
Connectome cost conservation model of skill learning
This project aims to model brain connectomes before and after skill learning to predict neuroplasticity and behavioral outcomes, bridging neuropsychology and neurobiology.
Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases
The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.
MRI-based ID of the Vasculature across the Heart-Brain Axis
Developing VascularID, a non-invasive MRI tool for assessing cardiac and cerebral microvasculature, to enhance understanding and treatment of heart-brain axis diseases.
Revealing the wiring rules of neural circuit assembly with spatiotemporally resolved molecular connectomics
This project aims to develop a novel method for large-scale neural circuit tracing and RNA sequencing to understand genomic influences on brain connectivity and its implications for autism.