Morphogenesis meets Cell Fate: Dissecting how Mechanical Forces coordinate Development
This project aims to explore how mechanical forces influence morphogenesis and cell fate in Xenopus embryos, integrating biophysical methods to enhance understanding of tissue formation.
Projectdetails
Introduction
During embryonic development, an unspecialized cell mass is transformed into complex tissues and organs through collective movements and cell interactions. The acquisition of such structural and functional diversity is powered by two main processes: morphogenesis, which sculpts cells into tissues and organs, and cell fate acquisition, which assigns specific identities to cells.
Research Gap
Despite extensive research, the intricate coordination between these two processes remains elusive. Mechanical forces determine the shape and structure of tissues, and their impact on cell fate has been recently uncovered, emphasizing the significance of mechanics in regulating both morphogenesis and cell fate.
Complexity of Relationship
However, understanding the relationship between these two processes is complex, as it requires the integration of:
- Cell shape
- Cell behavior
- Mechanics
- Gene expression across the tissue over time
Project Overview
In this project, we will apply cutting-edge biophysical and data science methods to the mucociliary epithelium of Xenopus embryos to dissect the role of mechanics in both morphogenesis and cell fate acquisition in vivo.
Objectives
- We will first determine how cells undergoing fate acquisition trigger local tissue rearrangements that lead to global morphogenetic movements.
- Next, we will investigate the impact of tissue mechanics on cell fate and transitions.
- Finally, we will combine cell behaviors, gene expression, and mechanics into a model to predict cell fate.
Significance
By exploring the ways cells respond to and modify their mechanical surroundings and the circumstances in which external forces determine cell fate, we will uncover the basic principles of complex tissue formation. This research will give us a comprehensive understanding of how individual cells, as mechanical elements, interact to form a tissue structure that is more than just the sum of its parts.
Impact
The findings will have a significant impact on other tissues, particularly the human airways, and advance our knowledge of embryonic development.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-3-2024 |
Einddatum | 28-2-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- KOBENHAVNS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Uncovering the Diversity of Cell-Cell Interactions that Impact Cell FatesThis project aims to develop a novel method for high-resolution transcriptomic analysis of cellular microenvironments to understand how cell communication influences neural crest cell development and fate. | ERC STG | € 1.499.900 | 2023 | Details |
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisationThis project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies. | ERC STG | € 1.499.381 | 2022 | Details |
Control mechanisms and robustness of multicellular symmetry breakingThis project aims to uncover the mechanisms of symmetry breaking in early animal development by integrating genetic, biophysical, and synthetic approaches to enhance our understanding of tissue organization. | ERC SyG | € 10.259.926 | 2024 | Details |
Coupling morphogen dynamics with mechanics in the control of form and patternThis project aims to uncover how morphogen dynamics and mechanical properties interact to coordinate patterning and morphogenesis in zebrafish and human gastruloids, with broader implications for biology and medicine. | ERC STG | € 1.500.000 | 2024 | Details |
Uncovering the Diversity of Cell-Cell Interactions that Impact Cell Fates
This project aims to develop a novel method for high-resolution transcriptomic analysis of cellular microenvironments to understand how cell communication influences neural crest cell development and fate.
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisation
This project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies.
Control mechanisms and robustness of multicellular symmetry breaking
This project aims to uncover the mechanisms of symmetry breaking in early animal development by integrating genetic, biophysical, and synthetic approaches to enhance our understanding of tissue organization.
Coupling morphogen dynamics with mechanics in the control of form and pattern
This project aims to uncover how morphogen dynamics and mechanical properties interact to coordinate patterning and morphogenesis in zebrafish and human gastruloids, with broader implications for biology and medicine.