Modelling Inter-Scale Energetics in GastroIntestinal ElectroMechanics
MiGEM aims to develop a comprehensive multiphysics model of gastrointestinal motility to advance research and therapies for GI disorders through innovative thermodynamic and experimental approaches.
Projectdetails
Introduction
The MiGEM proposal targets one of the remaining grand challenges in biomechanics: the development of a comprehensive, inter-scale, thermodynamically and energetically coherent multiphysics model of gastrointestinal (GI) motility.
Importance of the Project
Despite the importance of gastrointestinal disorders as a primary global health problem, electromechanical modelling of gastrointestinal motility still presents significant theoretical and experimental limitations compared to more advanced fields such as cardiovascular bioengineering.
Technical Challenges
Technical difficulties exist due to:
- The intrinsic multiscale nature of gastrointestinal tissues
- The coupling of multiple cell types and roles
- The combination of electrical and mechanical phenomena involving different energetic mechanisms
Potential Impact
MiGEM has the potential to unlock new frontiers in GI research, addressing several state-of-the-art problems in gastrointestinal motility and opening unprecedented opportunities in novel subject-specific therapies.
Scientific Approach
By adopting a rigorous theoretical-experimental scientific approach, MiGEM will advance state-of-the-art gastrointestinal theoretical modelling and experimental measurements. This will unveil fundamental energetic mechanisms that govern stomach and intestine motility in health and disease.
Innovative Measurements
MiGEM will enable the first calorimetric measurement of tissue samples from the GI tract and create a new path in biomechanical modelling by assimilating innovative data into multiscale thermodynamic models.
Collaboration and Networking
The project will create a new network of scientists with complementary experimental and modelling skills, fostering cross-fertilization, providing senior-to-junior methodological transfer, and supporting gender balance.
Key Elements for Success
The scientific experience of the PI, the formal membership to the project of the ABI, University of Auckland, and the multiple scientific collaborations that the PI has engaged in for many years will be the key elements to successfully carry out an ambitious and high-risk project.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-3-2025 |
Einddatum | 28-2-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITA CAMPUS BIO MEDICO DI ROMApenvoerder
- THE UNIVERSITY OF AUCKLAND
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisationThis project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies. | ERC STG | € 1.499.381 | 2022 | Details |
Dissection of the host-microbe crosstalk that controls metabolism and physiology in intestinal symbiosisThis project aims to explore the regulatory mechanisms of intestinal bacteria and their symbiotic relationship with hosts using Drosophila to enhance understanding of gut metabolism and health. | ERC STG | € 1.499.600 | 2023 | Details |
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug PenetrationThis project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes. | ERC STG | € 1.499.693 | 2024 | Details |
Wireless magnetothermal entero-modulationThis project aims to develop a biocompatible magnetic gel for remote activation of intestinal tissue to modulate calcium signaling and neuropeptide release, addressing GI disorders non-invasively. | ERC STG | € 1.500.000 | 2024 | Details |
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisation
This project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies.
Dissection of the host-microbe crosstalk that controls metabolism and physiology in intestinal symbiosis
This project aims to explore the regulatory mechanisms of intestinal bacteria and their symbiotic relationship with hosts using Drosophila to enhance understanding of gut metabolism and health.
Personalised Mechanobiological Models to Predict Tumour Growth and Anti-Cancer Drug Penetration
This project aims to develop a personalized cancer treatment framework by modeling stress-dependent tumor growth and drug penetration to enhance patient-specific therapy outcomes.
Wireless magnetothermal entero-modulation
This project aims to develop a biocompatible magnetic gel for remote activation of intestinal tissue to modulate calcium signaling and neuropeptide release, addressing GI disorders non-invasively.