Mitochondrial DNA homeostasis in growing cells
MITOSIZE aims to uncover the molecular mechanisms linking mitochondrial DNA copy number to cell volume in eukaryotes, enhancing understanding of mtDNA regulation and its implications for cell function and aging.
Projectdetails
Introduction
Mitochondrial DNA (mtDNA) constitutes a substantial proportion of DNA in eukaryotes, and its regulation is critical not only for mitochondrial function but also for cell survival. However, it is still unclear how mtDNA copy number is maintained during cell proliferation and how mtDNA copy number impacts cell function.
Research Background
Recently, my group showed that in budding yeast, mtDNA copy number is tightly linked to cell volume to maintain constant concentrations, providing an elegant and potentially conserved strategy for mtDNA homeostasis. But how is mtDNA coupled to cell volume?
Based on my group’s work, we proposed that nuclear-encoded mtDNA maintenance factors produced in proportion to cell volume limit mtDNA replication and stability. This provides a conceptual mechanism for how cells link mtDNA copy number to total cellular protein content, and opens the door to a quantitative and molecular understanding of mtDNA homeostasis.
Project Goals
With MITOSIZE, I will reveal the molecular basis of this ‘limiting machinery’ mechanism. To test whether the mechanism is conserved across species and to chloroplast DNA, I will use two evolutionary distant eukaryotes:
- S. cerevisiae, whose size I can control genetically
- C. reinhardtii, whose size I can control with light
Methodology
I will use an interdisciplinary approach combining:
- Molecular biology
- Quantitative live-cell imaging
- Modelling
This will help develop a quantitative understanding based on measurements of mtDNA replication and degradation.
Expected Outcomes
I will then unravel the contribution of the ‘limiting machinery’ regulation to the dynamic adaptation of mtDNA to changing environments. Moreover, by breaking the coupling of mtDNA copy number to cell volume, I will dissect how cell volume and mtDNA copy number determine cell function and aging.
Significance
By identifying the molecular regulation underlying organellar DNA homeostasis, I will address a fundamental question in cell biology and open the door to new intervention strategies for mtDNA misregulation in diseases.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.933 |
Totale projectbegroting | € 1.999.933 |
Tijdlijn
Startdatum | 1-6-2025 |
Einddatum | 31-5-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBHpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mechanisms of proliferation-independent mutationThis project aims to uncover the mechanisms behind "clock" mutations that accumulate with age in non-dividing cells, using innovative single-cell sequencing to advance cancer research and aging insights. | ERC STG | € 1.500.000 | 2022 | Details |
The molecular nexus coupling Cell Metabolism to Cell cycle and Genome SurveillanceThis project aims to explore how reactive oxygen species (ROS) influence DNA replication and cell cycle dynamics during early development and cancer, using advanced cellular models and innovative analytical tools. | ERC STG | € 1.499.329 | 2023 | Details |
Structural studies of the human mitochondrial RNA life cycleMitoRNA aims to elucidate the molecular mechanisms of mitochondrial RNA metabolism and gene expression coupling using integrated structural biology to advance mitochondrial biology understanding. | ERC STG | € 1.499.754 | 2024 | Details |
Mechanisms of cellular response to errors in mitosis: a new, non-genetic approach to an old questionThis project aims to investigate how mitotic errors and nuclear abnormalities influence cellular homeostasis and tumorigenesis through non-genetic mechanisms, utilizing advanced genomic and imaging techniques. | ERC STG | € 1.498.111 | 2024 | Details |
Mechanisms of proliferation-independent mutation
This project aims to uncover the mechanisms behind "clock" mutations that accumulate with age in non-dividing cells, using innovative single-cell sequencing to advance cancer research and aging insights.
The molecular nexus coupling Cell Metabolism to Cell cycle and Genome Surveillance
This project aims to explore how reactive oxygen species (ROS) influence DNA replication and cell cycle dynamics during early development and cancer, using advanced cellular models and innovative analytical tools.
Structural studies of the human mitochondrial RNA life cycle
MitoRNA aims to elucidate the molecular mechanisms of mitochondrial RNA metabolism and gene expression coupling using integrated structural biology to advance mitochondrial biology understanding.
Mechanisms of cellular response to errors in mitosis: a new, non-genetic approach to an old question
This project aims to investigate how mitotic errors and nuclear abnormalities influence cellular homeostasis and tumorigenesis through non-genetic mechanisms, utilizing advanced genomic and imaging techniques.