Microwave Quantum Photonics for Quantum Technology and Fundamental Physics
The project aims to develop advanced microwave photodetectors for high-resolution photon counting, enabling groundbreaking single-photon experiments and insights into quantum technology and many-body physics.
Projectdetails
Introduction
With the proposed research programme, we plan to pioneer a platform that provides experimental access to the statistics of the microwave photons, thus opening up single-photon experiments in solid-state quantum devices.
Importance of Microwave Photons
Microwave photons play a major role throughout all solid-state quantum technology architectures, including:
- Superconducting qubits
- Charge qubits
- Spin qubits in semiconductors
They are used for control, coupling, and readout. However, the particle nature of the photons and, in particular, their statistical properties remain unexplored. The main roadblock here is the lack of suitable microwave photodetectors for performing continuous photon counting at high quantum conversion efficiency.
Development of Novel Sensors
We will create sensors probing the timing between two photons with time resolution better than the time–uncertainty Heisenberg limit of the individual photons.
Applications of New Measurement Tools
Thereby, we will create novel measurement tools applicable throughout the quantum technology field. In particular, the photon counting developed in this research programme will:
- Open up the avenue to implement quantum computing based on so-called boson sampling with superconducting circuits.
- Combine two key requirements for practical quantum computing:
- The programmability of the superconducting circuits
- The stronger quantum advantage of quantum processors based on boson sampling
Fundamental Insights
Beyond enabling these new measurement capabilities, we will generate unique experimental insights.
Correlated States and Many-Body Physics
The interplay between correlated bosonic and fermionic states — e.g., on how the bosonic particle statistics of the photons map onto the fermionic ones of the electrons — is likely to spur new experimental activities around many-body physics.
Understanding Quantum Measurements
Furthermore, the detection timing resolution beyond the Heisenberg limit will also shed light on the still unknown physics question of how measurements really work and act in the quantum physics domain.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.533.247 |
Totale projectbegroting | € 2.533.247 |
Tijdlijn
Startdatum | 1-7-2023 |
Einddatum | 30-6-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
sINGle microwave photon dEtection for hybrid quaNtum Information prOcessing and quantUm enhanced SensingThis project aims to enhance single microwave photon detection to explore new luminescent systems, focusing on quantum computing, sensing applications, and dark-matter candidates. | ERC STG | € 1.840.536 | 2022 | Details |
Superatom Waveguide Quantum ElectrodynamicsSuperWave aims to achieve many-body quantum non-linear optics by combining superatoms and waveguide QED to create advanced fiber-coupled quantum devices for various applications in quantum technology. | ERC SyG | € 8.138.040 | 2023 | Details |
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materialsThe project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales. | ERC STG | € 1.572.500 | 2025 | Details |
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with LightCIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications. | EIC Pathfinder | € 2.548.532 | 2024 | Details |
sINGle microwave photon dEtection for hybrid quaNtum Information prOcessing and quantUm enhanced Sensing
This project aims to enhance single microwave photon detection to explore new luminescent systems, focusing on quantum computing, sensing applications, and dark-matter candidates.
Superatom Waveguide Quantum Electrodynamics
SuperWave aims to achieve many-body quantum non-linear optics by combining superatoms and waveguide QED to create advanced fiber-coupled quantum devices for various applications in quantum technology.
Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materials
The project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales.
Cavity-Integrated Electro-Optics: Measuring, Converting and Manipulating Microwaves with Light
CIELO aims to develop laser-based electro-optic interconnects for scalable quantum processors, enhancing quantum information transfer and enabling advanced sensing applications.