Mechanisms of liver regeneration and disease across scales; from molecules to cells and tissue
This project aims to uncover liver regeneration mechanisms and disease pathways to develop complex organoids for studying tissue repair and disease principles.
Projectdetails
Introduction
Despite recent advances, the principles that regulate liver regeneration and how their deregulation leads to disease remain largely unknown. The main goal of this application is to uncover molecular and cellular principles that govern liver regeneration and disease and exploit this knowledge to develop more complex multicellular organoid systems capable of reconstructing liver tissue in a dish.
Approach
We will adopt a multi-scale (from molecule to tissue) and multidisciplinary approach, addressing the interplay between cell-intrinsic and cell-extrinsic mechanisms in damage paradigms that result in repair vs disease.
Aim 1: Genomic Loci Identification
In Aim 1, we will identify the genomic loci (e.g. transcription factors, signaling pathways, or epigenetic regulators) involved in regeneration and disease, to gain a systems-level understanding of the gene regulatory mechanisms driving liver regeneration and disease.
Aim 2: Biochemical Signals Investigation
In Aim 2, we will investigate the biochemical signals mediated through cell-cell interactions between ductal cells and mesenchymal cells, to gain mechanistic understanding of how epithelial–mesenchymal cellular interactions regulate regeneration and their role in disease, particularly fibrosis.
Aim 3: Organoid Construction
In Aim 3, we will build complex multicellular organoids to reconstruct the liver lobule cellular interactions and architecture.
Conclusion
An in-depth understanding of the molecular and cellular mechanisms driving tissue regeneration and their deregulation in disease holds the potential to uncover new principles of liver biology. The generation of complex multicellular organoids that recapitulate liver cellular interactions and architecture will provide valuable tools for future mechanistic studies aiming at investigating molecular and cellular principles of tissue maintenance, repair, and disease.
Transferring these to human tissues will facilitate future studies addressing the long-standing question as to which principles of repair are conserved in humans and which are human-specific.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.999.980 |
Totale projectbegroting | € 1.999.980 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and CancerThis project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets. | ERC STG | € 2.025.000 | 2022 | Details |
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisationThis project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies. | ERC STG | € 1.499.381 | 2022 | Details |
Decoding Extracellular Vesicle-mediated organ crosstalk in vivoThis project aims to investigate hepatic extracellular vesicle-mediated inter-organ communication in vivo using a transparent zebrafish model to enhance understanding of their role in health and disease. | ERC STG | € 1.500.000 | 2023 | Details |
Function of Cholangiocytes in chronic liver diseasesThis project aims to investigate cholangiocyte mechanisms in chronic liver disease using organoids and animal models to develop therapies for tissue repair and cancer prevention. | ERC ADG | € 2.499.289 | 2025 | Details |
Understanding the functional role of Immune-related Intercellular Signalling Networks during tissue Development and Cancer
This project aims to uncover immune-related intercellular crosstalk in tissue development and cancer using single-cell RNA-sequencing and functional assays to identify novel therapeutic targets.
Physical basis of Collective Mechano-Transduction: Bridging cell decision-making to multicellular self-organisation
This project investigates how mechanical forces in tissue microenvironments influence gene expression and multicellular behavior, aiming to bridge biophysics and biochemistry for improved disease therapies.
Decoding Extracellular Vesicle-mediated organ crosstalk in vivo
This project aims to investigate hepatic extracellular vesicle-mediated inter-organ communication in vivo using a transparent zebrafish model to enhance understanding of their role in health and disease.
Function of Cholangiocytes in chronic liver diseases
This project aims to investigate cholangiocyte mechanisms in chronic liver disease using organoids and animal models to develop therapies for tissue repair and cancer prevention.