Impact of foreshock transients on near-Earth space
The WAVESTORMS project aims to investigate the role of foreshock transients in collisionless shocks and their effects on particle acceleration and wave storms in Earth's magnetosphere.
Projectdetails
Introduction
This project addresses major open questions in plasma physics: the dynamics of collisionless shocks, their impact on the downstream medium, and particle acceleration. Collisionless shocks are powerful particle accelerators, ubiquitous in astrophysical plasmas. Recent works suggest that the dynamics of the shock precursor, or foreshock, contributes greatly to shock acceleration.
Research Focus
Here we use near-Earth space as a natural laboratory to quantify the impact of transient kinetic structures forming in the foreshock. These foreshock transients are particularly intriguing because, in addition to contributing to acceleration at the shock itself, they impact geospace as a whole in driving swift, intense wave storms in Earth's magnetosphere.
Data and Findings
In this proposal, I present recent data revealing that these waves accelerate energetic electrons in Earth's radiation belts, connecting for the first time the dynamics of two major acceleration sites at Earth. This issue has never been explored because of considerable challenges:
- Multi-point in situ observations
- Global kinetic simulations
These are needed to unravel the complex processes at work.
Project Goals
The WAVESTORMS project makes full use of recent advances on both of these fronts to resolve the impact of foreshock transients on near-Earth space in a holistic manner. Using a flagship kinetic model of the global magnetosphere and high-fidelity space- and ground-based measurements, we will:
- Fully characterise their interaction with the shock and their contribution to shock acceleration.
- Quantify the radiation belt response (acceleration and losses).
- Connect our findings to the solar wind context.
- Quantify their global impact on near-Earth space.
Expertise
My expertise in foreshock physics and in combining multi-mission data and cutting-edge simulations puts me in a unique position to lead this project. Our results will constitute a breakthrough in our understanding of near-Earth space dynamics and particle acceleration in general.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.084 |
Totale projectbegroting | € 1.998.084 |
Tijdlijn
Startdatum | 1-9-2024 |
Einddatum | 31-8-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- HELSINGIN YLIOPISTOpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Planetary space simulations based on the particle description for electrons and ions.Develop a particle-based PIC model using ECsim to analyze solar storm impacts on planetary environments, enhancing understanding of energy transfer and infrastructure protection. | ERC ADG | € 518.233 | 2023 | Details |
Past Solar Storms: The links between solar storms and solar activityThis project aims to enhance the detection of past solar storms using cosmogenic radionuclides to understand their recurrence and link to solar activity, extending space weather research to millennial scales. | ERC ADG | € 2.498.835 | 2024 | Details |
Waves for energy in magnetized plasmasSMARTWAVES aims to develop a novel plasma regime for fusion devices by enhancing wave-particle interaction understanding, improving diagnostics, and bridging fusion, space, and astrophysical research. | ERC ADG | € 2.511.038 | 2024 | Details |
Planetary space simulations based on the particle description for electrons and ions.
Develop a particle-based PIC model using ECsim to analyze solar storm impacts on planetary environments, enhancing understanding of energy transfer and infrastructure protection.
Past Solar Storms: The links between solar storms and solar activity
This project aims to enhance the detection of past solar storms using cosmogenic radionuclides to understand their recurrence and link to solar activity, extending space weather research to millennial scales.
Waves for energy in magnetized plasmas
SMARTWAVES aims to develop a novel plasma regime for fusion devices by enhancing wave-particle interaction understanding, improving diagnostics, and bridging fusion, space, and astrophysical research.