How do cells form an embryo: Intracellular, temporal, and phenotypic dissection of mammalian gastrulation

This project aims to understand cellular differentiation during mammalian gastrulation by integrating single-cell transcriptomics with experimental models to uncover mechanisms of embryonic development.

Subsidie
€ 2.000.000
2024

Projectdetails

Introduction

In multicellular organisms, how variation is achieved while cells comprise identical genetic information represents a fundamental open challenge my group strives to engage in the coming years. The development of a single fertilized egg into a complete embryo represents an especially beautiful embodiment of this problem.

Differentiation Process

The process of differentiation is defined by the capacity of the cell ensemble to acquire increasingly more specialized internal states in a coordinated fashion. We are therefore excited by recent breakthroughs in single-cell transcriptomics and epigenomics since these can capture the emergence of embryonic cellular diversification at incredible resolution.

Need for Integration

However, we believe there is an urgent need in the field to match descriptive single-cell atlases with models and experimental frameworks to derive novel understanding of function and regulation in this process.

Research Approaches

To this end, we will undertake three complementary approaches – all implemented during specification of the basic mammalian body plan (gastrulation) in vivo:

  1. Scrutinizing Differentiation
    We will scrutinize parallel and converged differentiation in embryonic and extraembryonic lineages at absolute time. This will be achieved in both mouse and rabbit, providing unprecedented molecular insight into the evolutionary hourglass theory.

  2. Dissecting Epigenetic Mechanisms
    Building on our recently developed capabilities, we will systematically dissect epigenetic mechanisms shaping and memorizing intracellular states. Importantly, we will do so by controlling for cell type and effects that propagate in and between tissues over time.

  3. Charting Extracellular Signaling
    Finally, we will chart and manipulate extracellular signaling affecting cell specification in the 3D embryonic space.

Expected Outcomes

Our study will provide mechanistic understanding and much-needed quantitative models that truly represent embryonic development as a concurrent interacting ensemble with far-reaching implications for other fields, such as regenerative medicine, cancer, aging, and synthetic embryogenesis.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-10-2024
Einddatum30-9-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • WEIZMANN INSTITUTE OF SCIENCEpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Uncovering the Diversity of Cell-Cell Interactions that Impact Cell Fates

This project aims to develop a novel method for high-resolution transcriptomic analysis of cellular microenvironments to understand how cell communication influences neural crest cell development and fate.

€ 1.499.900
ERC ADG

Coordination of mouse embryogenesis in space and time at implantation

This project aims to investigate the coordination of developmental mechanisms in peri-implantation mouse embryos using advanced culture and imaging techniques to understand size regulation and morphogenesis.

€ 3.163.750
ERC SyG

Control mechanisms and robustness of multicellular symmetry breaking

This project aims to uncover the mechanisms of symmetry breaking in early animal development by integrating genetic, biophysical, and synthetic approaches to enhance our understanding of tissue organization.

€ 10.259.926
ERC STG

Coupling morphogen dynamics with mechanics in the control of form and pattern

This project aims to uncover how morphogen dynamics and mechanical properties interact to coordinate patterning and morphogenesis in zebrafish and human gastruloids, with broader implications for biology and medicine.

€ 1.500.000